Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 1, 27 - 32, 31.03.2021
https://doi.org/10.31593/ijeat.804913

Öz

Kaynakça

  • International Energy Agency Report, 2017. www.iea.org/publications/freepublications/ (19 September2019).
  • Deborah, P., Francesca, V. and Giuseppe, G. 2015. Analysis of the environmental impact of a biomass plant for the production of bioenergy. Renewable and Sustainable Energy Reviews, 51, 634-647.
  • Eghtedaei, R., Mirhosseini, S. A., Esfahani, M. J., Foroughi, A. and Akbari, H. 2017. Co-gasification of biomass and municipal solid waste for hydrogen-rich gas production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1491-1496.
  • Xiang, X., Gong, G., Shi, Y., Cai, Y. and Wang, C. 2018. Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification. Renewable and Sustainable Energy Reviews, 82, 2768-2778.
  • Mahapatra, S. and Dasappa, S. 2014. Influence of surface area to volume ratio of fuel particles on gasification process in a fixed bed. Energy for Sustainable Development, 19, 122-129.
  • Panwar, N. L., Kothari, R. and Tyagi, V. V. 2012. Thermo chemical conversion of biomass – ecofriendly energy routes. Renewable and Sustainable Energy Reviews, 16(4), 1801-1816.
  • Sansaniwal, S. K., Pal, K., Rosen, M. A. and Tyagi, S. K. 2017. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384.
  • Saxena, R. C., Seal, D., Kumar, S. and Goyal, H. B. 2008. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • Son, Y. I., Yoon, S. J., Kim, Y. K. and Lee, J. G. 2011. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier. Biomass and Bioenergy, 35(10), 4215-4220.
  • Chang, A. C., Chang, H. F., Lin, F. J., Lin, K. H. and Chen, C. H. 2011. Biomass gasification for hydrogen production. International Journal of Hydrogen Energy, 36(21), 14252-14260.
  • Dasappa, S., Subbukrishna, D. N., Suresh, K. C., Paul, P. J. and Prabhu, G. S. 2011. Operational experience on a grid connected 100 kWe biomass gasification power plant in Karnataka, India. Energy for sustainable development, 15(3), 231-239.
  • Jimenez, O., Curbelo, A. and Suarez, Y. 2012. Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy for Sustainable Development, 16(1), 98-102.
  • Vera, D., Jurado, F., Margaritis, N. K. and Grammelis, P. 2014. Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energy for Sustainable Development, 23, 247-257.
  • Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A. and Khasri, A. 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333-1347.
  • Wang, Y. and Zhang, S. 2017. Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B: Economics, Planning, and Policy, 12(11), 1022-1029.
  • E.Tool Box, Fuels higher and lower calorific values, 2003.www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html. (13 September 2019.)
  • Sharma, S. and Sheth, P. N. 2016. Air–steam biomass gasification: experiments, modeling and simulation. Energy conversion and management, 110, 307-318.
  • Zhao, L. and Lu, Y. 2018. Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: A CFD-DEM study. The Journal of Supercritical Fluids, 131, 26-36.
  • Cui, H. and Grace, J. R. 2007. Fluidization of biomass particles: A review of experimental multiphase flow aspects. Chemical Engineering Science, 62(1-2), 45-55.
  • Wang, S., Luo, K., Hu, C., Sun, L. and Fan, J. 2018. Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Powder Technology, 333, 304-316.
  • Behainne, J. J. R. and Martinez, J. D. 2014. Performance analysis of an air-blown pilot fluidized bed gasifier for rice husk. Energy for Sustainable Development, 18, 75-82.
  • Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y. and Zhu, J.X., 2004. An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95-101.
  • Campoy, M., Gomez-Barea, A., Vidal, F.B. and Ollero, P., 2009. Air–steam gasification of biomass in a fluidised bed: process optimisation by enriched air. Fuel Processing Technology, 90(5), 677-685.
  • Gil-Lalaguna, N., Sánchez, J.L., Murillo, M.B., Rodríguez, E. and Gea, G., 2014. Air–steam gasification of sewage sludge in a fluidized bed. Influence of some operating conditions. Chemical Engineering Journal, 248, 373-382.
  • Yan, L., Li, Y., Yang, B., Farahani, M.R. and Gao, W., 2018. Air-steam gasification of municipal solid wastes (MSWs) for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(5), 538-543.
  • Kuhe, A. and Aliyu, S.J., 2015. Gasification of' Loose'Groundnut Shells in a Throathless Downdraft Gasifier. International Journal of Renewable Energy Development, 4(2), 125-130.
  • Worldatlas, Where are Peanuts Grown?, 2019. https://www.worldatlas.com/articles/top-peanut-groundnut-producing-countries.html. (19 September 2019.)
  • Jarungthammachote, S. and Dutta, A., 2007. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32(9),1660-1669.
  • Costa, M., Massarotti, N., Cappuccio, G., Chang, C.T., Shiue, A., Lin, C.J. and Wang, Y.T., 2014. Modeling of syngas production from biomass energy resources available in Taiwan. Chemical Engineering, 37, 343-348.
  • Xi, W., Shi, Z., Farahani, M.R. and Gao, W., 2017. Computer simulation of coal gasification in a full scale plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(8), 768-774.
  • La Villetta, M., Costa, M. and Massarotti, N., 2017. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews, 74, 71-88.
  • Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A. and Uysal, B.Z., 2012. A parametric study on coal gasification for the production of syngas. Chemical Papers, 66(7), 677-683.
  • Kocer, A., Yaka, I.F. and Gungor, A., 2017. Evaluation of greenhouse residues gasification performance in hydrogen production. International Journal of Hydrogen Energy, 42(36), 23244-23249.
  • Sansaniwal, S.K., Rosen, M.A. and Tyagi, S.K., 2017. Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23-43.
  • Groppi, G., Tronconi, E., Forzatti, P. and Berg, M., 2000. Mathematical modelling of catalytic combustors fuelled by gasified biomasses. Catalysis Today, 59(1-2), 151-162.
  • Gungor, A. and Yildirim, U., 2013. Two dimensional numerical computation of a circulating fluidized bed biomass gasifier. Computers & Chemical Engineering, 48, 234-250.
  • Natarajan, E. and Baskara Sethupathy, S., 2015. Gasification of groundnut shells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(9), 980-986.
  • Nisamaneenate, J., Atong, D., Sornkade, P. and Sricharoenchaikul, V., 2015. Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit. Renewable Energy, 79, 45-50.
  • Alzate, C.A., Chejne, F., Valdés, C.F., Berrio, A., De La Cruz, J. and Londoño, C.A., 2009. CO-gasification of pelletized wood residues. Fuel, 88(3), 437-445.
  • Kaushal, P., Pröll, T. and Hofbauer, H., 2007. Model development and validation: co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier. Fuel, 86(17-18), 2687-2695.
  • Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M. and Subramanian, P., 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13(1), 179-186.
  • Subbaiah, B.S., Murugan, D.K., Deenadayalan, D.B. and Dhamodharan, M.I., 2014. Gasification of biomass using fluidized bed. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 8995-9002.

Hydrogen production from groundnut shell via circulating fluidized bed technology

Yıl 2021, Cilt: 8 Sayı: 1, 27 - 32, 31.03.2021
https://doi.org/10.31593/ijeat.804913

Öz

In this study, hydrogen production performances of groundnut shells in a circulating fluidized bed gasifier is evaluated by employing a previously developed and validated model. Basically, we simulate a circulating fluidized bed gasification system that is connected to a water-gas shift reactor, for hydrogen purification with the gasifier temperature of 1150 K. We find that the amount of hydrogen gas produced from circulating fluidized bed gasification of groundnut shells increases from 49.25 kmol to 68.83 kmol (per 1000 kg of raw groundnut shells) when the gasifier is integrated with water-gas shift reactor. We observe that it is possible to obtain a high yield of hydrogen gas from the gasification of groundnut shells. Therefore, we conclude that the groundnut shell is a remarkable feedstock for bioenergy.

Kaynakça

  • International Energy Agency Report, 2017. www.iea.org/publications/freepublications/ (19 September2019).
  • Deborah, P., Francesca, V. and Giuseppe, G. 2015. Analysis of the environmental impact of a biomass plant for the production of bioenergy. Renewable and Sustainable Energy Reviews, 51, 634-647.
  • Eghtedaei, R., Mirhosseini, S. A., Esfahani, M. J., Foroughi, A. and Akbari, H. 2017. Co-gasification of biomass and municipal solid waste for hydrogen-rich gas production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1491-1496.
  • Xiang, X., Gong, G., Shi, Y., Cai, Y. and Wang, C. 2018. Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification. Renewable and Sustainable Energy Reviews, 82, 2768-2778.
  • Mahapatra, S. and Dasappa, S. 2014. Influence of surface area to volume ratio of fuel particles on gasification process in a fixed bed. Energy for Sustainable Development, 19, 122-129.
  • Panwar, N. L., Kothari, R. and Tyagi, V. V. 2012. Thermo chemical conversion of biomass – ecofriendly energy routes. Renewable and Sustainable Energy Reviews, 16(4), 1801-1816.
  • Sansaniwal, S. K., Pal, K., Rosen, M. A. and Tyagi, S. K. 2017. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384.
  • Saxena, R. C., Seal, D., Kumar, S. and Goyal, H. B. 2008. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • Son, Y. I., Yoon, S. J., Kim, Y. K. and Lee, J. G. 2011. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier. Biomass and Bioenergy, 35(10), 4215-4220.
  • Chang, A. C., Chang, H. F., Lin, F. J., Lin, K. H. and Chen, C. H. 2011. Biomass gasification for hydrogen production. International Journal of Hydrogen Energy, 36(21), 14252-14260.
  • Dasappa, S., Subbukrishna, D. N., Suresh, K. C., Paul, P. J. and Prabhu, G. S. 2011. Operational experience on a grid connected 100 kWe biomass gasification power plant in Karnataka, India. Energy for sustainable development, 15(3), 231-239.
  • Jimenez, O., Curbelo, A. and Suarez, Y. 2012. Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy for Sustainable Development, 16(1), 98-102.
  • Vera, D., Jurado, F., Margaritis, N. K. and Grammelis, P. 2014. Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energy for Sustainable Development, 23, 247-257.
  • Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A. and Khasri, A. 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333-1347.
  • Wang, Y. and Zhang, S. 2017. Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B: Economics, Planning, and Policy, 12(11), 1022-1029.
  • E.Tool Box, Fuels higher and lower calorific values, 2003.www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html. (13 September 2019.)
  • Sharma, S. and Sheth, P. N. 2016. Air–steam biomass gasification: experiments, modeling and simulation. Energy conversion and management, 110, 307-318.
  • Zhao, L. and Lu, Y. 2018. Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: A CFD-DEM study. The Journal of Supercritical Fluids, 131, 26-36.
  • Cui, H. and Grace, J. R. 2007. Fluidization of biomass particles: A review of experimental multiphase flow aspects. Chemical Engineering Science, 62(1-2), 45-55.
  • Wang, S., Luo, K., Hu, C., Sun, L. and Fan, J. 2018. Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Powder Technology, 333, 304-316.
  • Behainne, J. J. R. and Martinez, J. D. 2014. Performance analysis of an air-blown pilot fluidized bed gasifier for rice husk. Energy for Sustainable Development, 18, 75-82.
  • Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y. and Zhu, J.X., 2004. An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95-101.
  • Campoy, M., Gomez-Barea, A., Vidal, F.B. and Ollero, P., 2009. Air–steam gasification of biomass in a fluidised bed: process optimisation by enriched air. Fuel Processing Technology, 90(5), 677-685.
  • Gil-Lalaguna, N., Sánchez, J.L., Murillo, M.B., Rodríguez, E. and Gea, G., 2014. Air–steam gasification of sewage sludge in a fluidized bed. Influence of some operating conditions. Chemical Engineering Journal, 248, 373-382.
  • Yan, L., Li, Y., Yang, B., Farahani, M.R. and Gao, W., 2018. Air-steam gasification of municipal solid wastes (MSWs) for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(5), 538-543.
  • Kuhe, A. and Aliyu, S.J., 2015. Gasification of' Loose'Groundnut Shells in a Throathless Downdraft Gasifier. International Journal of Renewable Energy Development, 4(2), 125-130.
  • Worldatlas, Where are Peanuts Grown?, 2019. https://www.worldatlas.com/articles/top-peanut-groundnut-producing-countries.html. (19 September 2019.)
  • Jarungthammachote, S. and Dutta, A., 2007. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32(9),1660-1669.
  • Costa, M., Massarotti, N., Cappuccio, G., Chang, C.T., Shiue, A., Lin, C.J. and Wang, Y.T., 2014. Modeling of syngas production from biomass energy resources available in Taiwan. Chemical Engineering, 37, 343-348.
  • Xi, W., Shi, Z., Farahani, M.R. and Gao, W., 2017. Computer simulation of coal gasification in a full scale plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(8), 768-774.
  • La Villetta, M., Costa, M. and Massarotti, N., 2017. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews, 74, 71-88.
  • Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A. and Uysal, B.Z., 2012. A parametric study on coal gasification for the production of syngas. Chemical Papers, 66(7), 677-683.
  • Kocer, A., Yaka, I.F. and Gungor, A., 2017. Evaluation of greenhouse residues gasification performance in hydrogen production. International Journal of Hydrogen Energy, 42(36), 23244-23249.
  • Sansaniwal, S.K., Rosen, M.A. and Tyagi, S.K., 2017. Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23-43.
  • Groppi, G., Tronconi, E., Forzatti, P. and Berg, M., 2000. Mathematical modelling of catalytic combustors fuelled by gasified biomasses. Catalysis Today, 59(1-2), 151-162.
  • Gungor, A. and Yildirim, U., 2013. Two dimensional numerical computation of a circulating fluidized bed biomass gasifier. Computers & Chemical Engineering, 48, 234-250.
  • Natarajan, E. and Baskara Sethupathy, S., 2015. Gasification of groundnut shells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(9), 980-986.
  • Nisamaneenate, J., Atong, D., Sornkade, P. and Sricharoenchaikul, V., 2015. Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit. Renewable Energy, 79, 45-50.
  • Alzate, C.A., Chejne, F., Valdés, C.F., Berrio, A., De La Cruz, J. and Londoño, C.A., 2009. CO-gasification of pelletized wood residues. Fuel, 88(3), 437-445.
  • Kaushal, P., Pröll, T. and Hofbauer, H., 2007. Model development and validation: co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier. Fuel, 86(17-18), 2687-2695.
  • Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M. and Subramanian, P., 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13(1), 179-186.
  • Subbaiah, B.S., Murugan, D.K., Deenadayalan, D.B. and Dhamodharan, M.I., 2014. Gasification of biomass using fluidized bed. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 8995-9002.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Bekir Can Lütfüoğlu Bu kişi benim 0000-0001-6467-5005

Esat Pehlivan 0000-0002-7839-2572

Zuhal Akyürek 0000-0003-3102-4278

Ali Özhan Akyüz 0000-0001-9265-7293

Afşin Güngör 0000-0002-4245-7741

Yayımlanma Tarihi 31 Mart 2021
Gönderilme Tarihi 4 Ekim 2020
Kabul Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

APA Lütfüoğlu, B. C., Pehlivan, E., Akyürek, Z., Akyüz, A. Ö., vd. (2021). Hydrogen production from groundnut shell via circulating fluidized bed technology. International Journal of Energy Applications and Technologies, 8(1), 27-32. https://doi.org/10.31593/ijeat.804913
AMA Lütfüoğlu BC, Pehlivan E, Akyürek Z, Akyüz AÖ, Güngör A. Hydrogen production from groundnut shell via circulating fluidized bed technology. IJEAT. Mart 2021;8(1):27-32. doi:10.31593/ijeat.804913
Chicago Lütfüoğlu, Bekir Can, Esat Pehlivan, Zuhal Akyürek, Ali Özhan Akyüz, ve Afşin Güngör. “Hydrogen Production from Groundnut Shell via Circulating Fluidized Bed Technology”. International Journal of Energy Applications and Technologies 8, sy. 1 (Mart 2021): 27-32. https://doi.org/10.31593/ijeat.804913.
EndNote Lütfüoğlu BC, Pehlivan E, Akyürek Z, Akyüz AÖ, Güngör A (01 Mart 2021) Hydrogen production from groundnut shell via circulating fluidized bed technology. International Journal of Energy Applications and Technologies 8 1 27–32.
IEEE B. C. Lütfüoğlu, E. Pehlivan, Z. Akyürek, A. Ö. Akyüz, ve A. Güngör, “Hydrogen production from groundnut shell via circulating fluidized bed technology”, IJEAT, c. 8, sy. 1, ss. 27–32, 2021, doi: 10.31593/ijeat.804913.
ISNAD Lütfüoğlu, Bekir Can vd. “Hydrogen Production from Groundnut Shell via Circulating Fluidized Bed Technology”. International Journal of Energy Applications and Technologies 8/1 (Mart 2021), 27-32. https://doi.org/10.31593/ijeat.804913.
JAMA Lütfüoğlu BC, Pehlivan E, Akyürek Z, Akyüz AÖ, Güngör A. Hydrogen production from groundnut shell via circulating fluidized bed technology. IJEAT. 2021;8:27–32.
MLA Lütfüoğlu, Bekir Can vd. “Hydrogen Production from Groundnut Shell via Circulating Fluidized Bed Technology”. International Journal of Energy Applications and Technologies, c. 8, sy. 1, 2021, ss. 27-32, doi:10.31593/ijeat.804913.
Vancouver Lütfüoğlu BC, Pehlivan E, Akyürek Z, Akyüz AÖ, Güngör A. Hydrogen production from groundnut shell via circulating fluidized bed technology. IJEAT. 2021;8(1):27-32.