Enhancing summer thermal comfort and energy performance in university office spaces using DesignBuilder’s parametric optimization: The role of window openings, solar shading, and HVAC systems
Yıl 2025,
Cilt: 10 Sayı: 2, 461 - 510, 26.06.2025
Gonca Özer
Öz
Improving energy efficiency, reducing consumption, and enhancing indoor thermal comfort are key concerns in sustainable architecture. While much research has addressed minimizing heating demands during winter, fewer studies have explored strategies to improve thermal comfort and reduce cooling loads during summer. This study aims to bridge that gap by analyzing the combined effects of window opening ratios, solar shading devices, and HVAC systems on summer energy performance and indoor comfort in faculty offices at Bingöl University.
The hypothesis suggests that optimizing window openings, implementing suitable shading strategies, and selecting effective HVAC systems can significantly enhance thermal comfort and lower cooling energy use. The study explores four main questions: (1) How effective is natural ventilation through varying window openings? (2) How much can solar shading reduce overheating and cooling loads? (3) How do mechanical systems interact with passive design strategies? (4) What is the combined effect of all three parameters on performance?
A parametric simulation approach was applied using DesignBuilder software. Scenarios included window openings from 5% to 50%, ten solar shading configurations, and five HVAC types. A total of 498 simulations generated a robust dataset for performance analysis. Results show that integrated optimization can reduce cooling energy use by up to 62% and improve thermal comfort by up to 54% compared to the base case. These findings confirm the initial hypothesis and underscore the value of holistic design strategies. In conclusion, this research offers a structured framework for improving summer thermal performance in educational office spaces. It provides actionable insights for architects, engineers, and policymakers seeking to enhance indoor environmental quality and energy efficiency in warm climate zones.
Kaynakça
-
[1] Peng Y, Lei Y, Tekler Z D, Antanuri N, Lau S K, Chong A. Hybrid system controls of natural ventilation and HVAC in mixed-mode buildings: A comprehensive review. Energy and Buildings 2022; 276: 112509.
-
[2] IEA. Buildings-Sectorial overview. 2021 Tracking report. 2022. https://www. iea.org/reports/buildings (accessed 23 July, 2024).
-
[3] W.G.B.C. Webpage, Bringing embodied carbon upfront, http://tinyurl .com / 5974d7z6, 2022. (Accessed 20 February 2024).
-
[4] Zhou Y P, Wu J Y, Wang R Z, Shiochi S. Energy simulation in the variable refrigerant flow air-conditioning system under cooling conditions. Energy and Buildings 2007; 39 (2): 212–220.
-
[5] Yao Y, Lian Z, Liu W, Hou Z, Wu M. Evaluation program for the energy-saving of variable-air-volume systems. Energy and Buildings 2007; 39 (5): 558–568.
-
[6] Aynur T N, Hwang Y, Radermacher R. Simulation of a VAV air conditioning system in an existing building for the cooling mode. Energy and Buildings 2009; 41(9): 922-929.
-
[7] Birol FJIEA. The future of cooling: opportunities for energy-efficient air conditioning. International Energy Agency 2018; 526.
-
[8] Fu X, Wu D. Comparison of the efficiency of building hybrid ventilation systems with different thermal comfort models. Energy Procedia 2015; 78: 2820-2825.
-
[9] Tong Z, Chen Y, Malkawi A, Liu Z, Freeman RB. Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Appl. Energy 2016; 179: 660–668, https://doi.org/10.1016/j.apenergy.2016.07.019.
-
[10] Oropeza-Perez I, Østergaard P A. Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico. Appl. Energy 2014a; 130: 20–32, https://doi.org/10.1016/j.apenergy.2014.05.035.
-
[11] Oropeza-Perez I, Østergaard P A. Potential of natural ventilation in temperate countries – A case study of Denmark, Appl. Energy 2014b; 114:520–530, https://doi.org/10.1016/j.apenergy.2013.10.008.
-
[12] Nazari S, Mohammadi P K M, Sareh P. Amulti-objective optimization approach to designing window and shading systems considering building energy consumption and occupant comfort. Engineering Reports 2023: 1-39.
-
[13] Shahdan M S, Ahmad, S S & HussinM A. External shading devices for energy efficient building. In IOP conference series: Earth and environmental science; 117: 1 (012034). 2018, February. IOP Publishing.
-
[14] Allouhi A, Boharb A, Saidur R, Kousksou T, Jamil A. Comprehensive Energy Systems 2018; 5: 1-44.
-
[15] Leu L, Boonyaputthipong C. A Study of shading devices in modern architecture for the hot humid climate of phnom penh, Cambodia. Journal of Environmental Design and Planning 2023; 22.
-
[16] Alothman R A T, Abdin A R, Mahmoud A H. The effect of using horizontal shading elements on the energy efficiency of multistory residential buildings. In IOP Conference Series: Earth and Environmental Science. 2024; 1283 (1); 012010. IOP Publishing.
-
[17] Perera U S, Weerasuriya A U, Zhang X, Ruparathna R, Tharaka M G I, & Lewangamage C S. Selecting suitable passive design strategies for residential high-rise buildings in tropical climates to minimize building energy demand. Building and Environment 2025; 267: 112177.
-
[18] Yin X, & Muhieldeen M W. Impact of vertical shading designs on the cross-ventilation performance of a high-rise office building. Results in Engineering 2024; 21: 101676.
-
[19] Abdeen A, Mushtaha E, Hussien A, Ghenai C, Maksoud A, & Belpoliti V. Simulation-based multi-objective genetic optimization for promoting energy efficiency and thermal comfort in existing buildings of hot climate. Results in Engineering 2024; 21: 101815.
-
[20] Albatayneh A. Sensitivity analysis optimisation of building envelope parameters in a sub-humid Mediterranean climate zone. Energy Exploration & Exploitation 2021; 39(6): 2080-2102.
-
[21] El Sherif S. The Impact of Overhangs and Side-fins on Building Thermal Comfort. Visual Comfort and Energy Consumption in the Tropics. 2012.
-
[22] Ebrahimpour A, & Maerefat M. Application of advanced glazing and overhangs in residential buildings. Energy Conversion and Management 2011; 52(1): 212-219.
-
[23] Bojić M. Application of overhangs and side fins to high-rise residential buildings in Hong Kong. Civil Engineering and Environmental Systems 2006; 23(4): 271-285.
-
[24] Ohba M, Lun I. Overview of natural cross ventilation studies and the latest simulation design tools used in building ventilation-related research. Advances in Building Energy Research 2010; 4:127-166.
-
[25] Liddament M W. A guide to energy efficient ventilation. Air Infiltration and Ventilation Centre. 1996.
-
[26] Brohus H, Frier C, Heiselberg P, et al. Measurements of hybrid ventilation performance in an Office building. Int J Vent 2003; 1: 77-88.
-
[27] Golabchi M, Noorzai E, Golabchi A, Gharouni Jafari K. Building Information Modeling. Tehran, Iran: Tehran University Press. 2016.
-
[28] Wang H, Zhai Z. Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings 2016; 128:319–35. doi:10.1016/j.enbuild.2016.06.080.
-
[29] Jalali Z, Noorzai E, Heidari S. Design and optimization of form and facade of an office building using the genetic algorithm. Science and Technology for the Built Environment 2020; 26(2): 128-140.
-
[30] Martinaitis V, Zavadskas E K, Motuzienė V, & Vilutienė T. Importance of occupancy information when simulating energy demand of energy efficient house: A case study. Energy and Buildings 2015; 101: 64-75.
-
[31] Avenda˜no-Vera C, Martinez-Soto A, Marincioni V. Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones, Renew. Sustain. Energy Rev 2020; 131: 110031.
-
[32] Fouad M M, Iskander J, Shihata L A. Energy, carbon and cost analysis for an innovative zero energy community design. Sol. Energy 2020; 206: 245–255.
-
[33] Zhu X, Bao T, Yu H, Zhao J. Utilizing Building Information Modeling and Visual Programming for Segment Design and Composition. J. Comput. Civ. Eng 2020; 34: 04020024.
-
[34] Liu Y, Li T, Xu W, Wang Q, Huang H, He B J. Building information modelling-enabled multi-objective optimization for energy consumption parametric analysis in green buildings design using hybrid machine learning algorithms. Energy and Buildings 2023; 300: 113665.
-
[35] Yaşa E. Avlulu binalarda doğal havalandırma ve soğutma açısından rüzgar etkisi ile oluşacak hava akımlarına yüzey açıklıklarının etkisinin deneysel incelenmesi. Doktora tezi, Fen Bilimleri Enstitüsü. 2004.
-
[36] Aybar Ş. Binaların Yeniden işlevlendirilmesinde iç mekân tasarımı: iklim odaklı pasif yöntemler. Güneşin Yeniden Keşfi 2022.
-
[37] Akın C, Kaplan S. Enerji kimlik belgelerinin enerji etkin mimari tasarım kriterleri açısından değerlendirilmesi. Dümf Mühendislik Dergisi 2019; 10(1): 373-384. https://doi.org/10.24012/dumf.523911.
-
[38] Yaman G Ö, Oral M, Dincer K, Canan F. Rule-Based Mamdani-Type Fuzzy Modelling of Buildings Annual Heating Energy Need in Design of Industrial Buildings in Konya-Turkey. Online Journal of Art & Design 2023; 11(4).
-
[39] Hasanov D. İmar planlarındaki konut alanlarına yönelik yapılaşma koşullarının i̇klim duyarlılığı değerlendirmesi: erzurum örneği. Planarch-Design and Planning Research. 2024; 8(1): 1-11. https://doi.org/10.54864/planarch.1455477
-
[40] [ (Url-1) (https://gksdergisi.com/gunes-kontrolu-gunes-kirici-ve-raflari/)
-
[41] Yaman G Ö. The effect of building facades window/wall ratio and window properties on energy performance. Journal of the Faculty of Engineering and Architecture of Gazi University 2023; 38(2): 851-863.
-
[42] Özer G. Binaların pencere/duvar oranı ve yönlenme parametrelerinin güneş enerjisi kazancına etkisi. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi 2021; 3(2): 425-441.
-
[43] Bektaş B, Aksoy U T. Soğuk iklimlerdeki binalarda pencere sistemlerinin enerji performansı. Fırat Üniv. Fen ve Müh. Bil. Dergisi 2005; 17(3): 499-508.
-
[44] Ayçam İ, Utkutuğ G. Farklı malzemelerle üretilen pencere tiplerinin isıl performanslarının incelenmesi ve enerji etkin pencere seçimi. 1999.
-
[45] Karakuş N, Selim S. Dış mekân termal konfor koşullarının zamansal ve mekânsal dağılımı: Konyaaltı-Antalya örneği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2022; 13(2): 259-269.
-
[46] Çelik E, Şirin Ş, Kıvak T. AISI 2507 süper dubleks paslanmaz çeliğinin hibrit soğutma/yağlama yöntemleri altında tornalanmasında yüzey kalitesinin incelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2021; 9(2): 929-942.
-
[47] Kolbüken M, Aytaç A S. Şanlıurfa ili’nde 2013-2015 yılları arasında biyoklimatik konfor koşulları ile doğal ölüm olayları arasındaki ilişkinin araştırılması. lnternational Journal of Geography and Geography Education 2020; 41: 346-366.
-
[48] ldeş E, Taşdemir F D, Umaroğulları F. İç mekân konfor şartlarının AVM (Alışveriş Merkezi) çalışanları üzerindeki etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2021; 9(3): 406-429.
-
[49] Umut İ, Akal D. Yapay zeka tarafından kontrol edilen yeni bir termoelektrik CPU soğutma sistemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2024; 39(1): 113-124.
-
[50] Yüksel E N, Ekici B B. Çift kabuk cephe sistemlerinin sıcak ve soğuk iklim bölgeleri için isıl performanslarının incelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 2023; 35(2): 495-504.
-
[51] Canan F, Geyikli H B. Dış mekân gölgeleme elemanlarının termal konfor koşullarına etkilerinin değerlendirilmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2023; 28(2): 684-694. https://doi.org/10.53433/yyufbed.1215174.
-
[52] Uslusoy Şenyurt S, Altın M. Ofis Yapıları İçin Çevreyle Uyumlu Yapı Dış Kabuğu Tasarım Parametrelerinin Enerji Tüketimine Etkisini Belirlemede Kullanılabilecek Bir Yaklaşım. Megaron 2020; 15(1).
-
[53] Yaman B, Arpacıoğlu Ü. Dinamik kontrollü uyarlanabilir cephe ve gölgeleme sistemleri. Journal of Architectural Sciences and Applications 2021; 6(1): 153-164.
-
[54] Bölük E, Eskioğlu O, Çalık Y, Yağan S. Köppen iklim sınıflandırmasına göre Türkiye iklimi. TC Orman ve Su İşleri Bakanlığı Meteoroloji Genel Müdürlüğü, Araştırma Dairesi Başkanlığı, Klimatoloji Şube Müdürlüğü, Ankara. 2023. https://www.mgm.gov.tr/files/iklim/iklim_siniflandirmalari/koppen.pdf
-
[55] Yaman G Ö, Varolgüneş F K, Çulun P. Investigation of thermal comfort in university offices: The case of the Bingöl University. Civil Engineering and Architecture 2021; 9 (7): 2441-2451.
-
[56] Santos M T, Akutsu M and Camargo de Brito A. 50th International Conference of the Architectural Science. Association Method for determining the efficiency of shading devices. 2016.
-
[57] Chen J, Augenbroe G, Song X. Evaluating the potential of hybrid ventilation for small to medium sized office buildings with different intelligent controls and uncertainties in US climates. Energy and Buildings 2018; 158: 1648-1661.
-
[58] Mousavi S, Gheibi M, Wacławek S, Smith N R, Hajiaghaei-Keshteli M, Behzadian K. Low-energy residential building optimisation for energy and comfort enhancement in semi-arid climate conditions. Energy Conversion and Management 2023; 291: 117264.
-
[59] Mehrpour Y, Balali A, Valipour A, Yunusa-Kaltungo A, Shamsnia S A. Envelope design optimisation for residential net zero energy buildings within cold and semi-arid climate: A case study of Shiraz. Energy for Sustainable Development 2024; 78: 101352.
-
[60] Lu Z, Gao Y, Xu C, Li Y. Configuration optimization of an off-grid multi-energy microgrid based on modified NSGA-II and order relation-TODIM considering uncertainties of renewable energy and load. Journal of Cleaner Production 2023; 383: Article 135312. https://doi.org/10.1016/j.jclepro.2022.135312
-
[61] Martínez-comesa˜na M, Eguía-oller P, Martínez-torres J, Febrero-garrido L. Granada-´alvarez E. Optimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoost. Sustainable Cities and Society 2022; 80: Article 103723. https://doi.org/10.1016/j.scs.2022.103723.
-
[62] Xu Y, Zhang G, Yan C, Wang G, Jiang Y, Zhao K. A two-stage multi-objective optimization method for envelope and energy generation systems of primary and secondary school teaching buildings in China. Building and Environment 2021; 204: Article 108142. https://doi.org/10.1016/j.buildenv.2021.108142.
-
[63] Lu S, Luo Y, Gao W, Lin B. Supporting early-stage design decisions with building performance optimisation: Findings from a design experiment. Journal of Building Engineering 2024; 82: 108298.
-
[64] Huang Y, Niu J L. Optimal building envelope design based on simulated performance: History, current status and new potentials. Energy and Buildings 2016; 117: 387-398.
-
[65] De Dear R J, & Brager G S. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and buildings 2002; 34(6), 549-561.
-
[66] Nicol J F, & Wilson M. A critique of European Standard EN 15251: strengths, weaknesses and lessons for future standards. Building Research & Information 2011; 39(2), 183-193.
-
[67] Rahimifar S, Sanaieian H, Tarkashvand A. Multi-parametric optimization volumetric porosity to minimize energy consumption in high-rise residential complexes. Energy and Buildings 2023; 300: 113630.
-
[68] Grosfeld-Nir A, Ronen B, Kozlovsky N. The pareto managerial principle: when does it apply?. International Journal of Production Research 2007; 45(10): 2317-2325. https://doi.org/10.1080/00207540600818203.
-
[69] Bre F, & Fachinotti V D. A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. Energy and Buildings 2017; 154, 283-294.
-
[70] Ascione F, Bianco N, Iovane T, Mauro G M, Napolitano D F, Ruggiano A, & Viscido L. A real industrial building: Modeling, calibration and Pareto optimization of energy retrofit. Journal of Building Engineering 2020; 29, 101186.
-
[71] Al Mindeel T, Spentzou E, & Eftekhari M. Energy, thermal comfort, and indoor air quality: Multi-objective optimization review. Renewable and Sustainable Energy Reviews 2024; 202, 114682.
-
[72] Hopfe C J. Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization. 2009.
-
[73] Huo H, Xu W, Li A, Chu J, & Lv Y. Sensitivity analysis and prediction of shading effect of external Venetian blind for nearly zero-energy buildings in China. Journal of Building Engineering 2021; 41, 102401.
-
[74] Xuanyuan P, Zhang Y, Yao J, & Zheng R. Sensitivity Analysis and Optimization of Energy-Saving Measures for Office Building in Hot Summer and Cold Winter Regions. Energies 2024; 17(7), 1675.
-
[75] Kürüm Varolgüneş F, Çulun P, Özer Yaman G. Bingöl ili ilköğretim yapıları iç mekân hava kalitesi parametrelerinin değerlendirilmesi. 2023.Gece Kitaplığı / Gece Publishing, ISBN: 978-625-430-706-5.
-
[76] Çulun P, Varolgüneş F K, Özer G, Kılınç C. Thermal comfort comparison of different dwelling typologies. İDEALKENT 2022; 13(38): 2677-2701.
-
[77] Demir, Y., Doğan Demir, A., Meral, R., Yüksel, A. Bingöl ovası iklim tipinin Thornthwaite ve Erinç indisine göre belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi (Turkish Journal of Agricultural and Natural Sciences) 2015; 2(4): 332–337.
-
[78] Alashan S. Bingöl ili rüzgâr potansiyeli ve iklim değişikliğinin etkisi. Doğ Afet Çev Derg Ocak 2020; 6(1):157-168. doi:10.21324/dacd.569072
-
[79] Yüksek İ, & Esin T. Yapılarda enerji etkinliği bağlamında doğal havalandırma yöntemlerinin önemi. Tesisat Mühendisliği 2011; 125: 63-77.
-
[80] Deng J Y, Wong N H, Hii D J C, Yu Z, Tan E, Zhen M, & Tong S. Indoor thermal environment in different generations of naturally ventilated public residential buildings in Singapore. Atmosphere 2022; 13(12): 2118.