Araştırma Makalesi
BibTex RIS Kaynak Göster

Çok Doğru Cevaplı ve Çok Çözüm Metotlu Etkinliklerin Ortaokul Matematik Ders Kitaplarındaki Yeri

Yıl 2020, Cilt: 7 Sayı: 4, 214 - 235, 23.12.2020

Öz

Bu çalışmada ortaokul matematik ders kitaplarındaki etkinliklerin sahip oldukları doğru cevap sayıları ve talep ettikleri çözüm metotları açısından incelenmesi amaçlanmıştır. Bu amaçla etkinlikler, (i) çok doğru cevap, (ii) tek doğru cevap, (iii) çok çözüm metodu ve (iv) tek çözüm metodu kategorileri açısından analiz edilmiştir. Çok doğru cevaba sahip etkinlikler, (i) sonlu çok doğru cevap (belirli veya değişken özellikli), (ii) sonsuz doğru cevap alt kategorileri altında ayrıca irdelenmiştir. Bu doğrultuda ortaokul düzeyinde her bir seviyeden (5, 6, 7, 8. sınıflar) birer kitap olmak üzere toplam dört kitaptaki etkinlikler kullanılmıştır. Elde edilen tüm bulgular birlikte değerlendirildiğinde, etkinliklerin ağırlıklı olarak tek çözüm metotlu olduğu ve sonsuz doğru cevaplı etkinliklere tüm kitaplarda sadece iki kez yer verildiği görülmüştür. Belirli sayıda çok doğru cevaba sahip etkinlikler ile tek doğru cevaplı etkinlikler belirli ve sabit ortak paydasında değerlendirildiğinde, sabit sayıda doğru cevabı olan etkinliklerin %75.5 oranında olduğu görülmüştür. Kitaplar arasında, beşinci sınıf ders kitabında daha fazla çok doğru cevaplı ve çok çözüm metotlu etkinliklere yer verilmiştir. Elde edilen bulgular, üst-düzey düşünme becerisi, üretkenlik, derin anlama ve öğrenciye biçilen roller ile ilişkilendirilerek tartışılmış ve bu bulgulara dayalı olarak ders kitabı ve öğretim programları araştırmaları için önerilerde bulunulmuştur. 

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Bayazit, I. (2013). Quality of the tasks in the new Turkish elementary mathematics textbooks: The case of proportional reasoning. International Journal of Science and Mathematics Education, 11(3), 651-682.
  • Bell, A. (1993). Principles for the design of teaching. Educational Studies in Mathematics, 24(1), 5–34.
  • Bilen, O. (2017). Ortaokul 7.sınıf matematik ders kitabı. Ankara: Gizem yayıncılık.
  • Bingölbali, F., Gören, A. E., & Arslan, S. (2016). Matematik öğretmenlerinin ders kitaplarını okuma düzeyleri: öğretim programının hedefleri doğrultusunda bir inceleme. Turkish Journal of Computer and Mathematics Education, 7(2), 460-485.
  • Bingölbali, F. (2017). Matematik öğretmenlerinin ders kitaplarını okuma yeterliklerinin incelenmesi ve bir mesleki gelişim programı önerisi (Yayımlanmamış doktora tezi). Gaziantep Üniversitesi, Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Bingolbali, E. (2011). Multiple solutions to problems in mathematics teaching: Do teachers really value them?. Australian Journal of Teacher Education, 36(1), 18-31.
  • Bingolbali, E. (2020). An analysis of questions with multiple solution methods and multiple outcomes in mathematics textbooks. International Journal of Mathematical Education in Science and Technology, 51(5), 669-687.
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40.
  • Brändström, A. (2005). Differentiated tasks in mathematics textbooks: An analysis of the levels of difficulty (Unpublished doctoral dissertation). Luleå Tekniska Universitet, Sweden.
  • Burkhardt, H., & Swan, M. (2013). Task design for systemic improvement: Principles and frameworks. In C. Margolinas (Ed.) Task design in mathematics education, Proceedings of ICMI Study 22 (pp. 431–439). UK: Oxford University.
  • Cai, J. (1995). A cognitive analysis of US and Chinese students' mathematical performance on tasks involving computation, simple problem solving, and complex problem solving. Journal for Research in Mathematics Education. Monograph No.7, i-151.
  • Cai, J. (2000). Mathematical thinking involved in US and Chinese students' solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2(4), 309-340.
  • De Lange, J. (1996). Using and applying mathematics in education. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International handbook of mathematics education (pp. 49-98).Dordrecht: Kluwer Academic Publishers.
  • Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23(2), 167-180.
  • Dyer, M., & Moynihan, C. (2000). Open-ended question in elementary mathematics instruction & assessment. Larchmont, N.Y. : Eye On Education.
  • Fan, L., Trouche, L., Qi, C., Rezat, S., & Visnovska, J. (Eds.). (2018). Research on mathematics textbooks and teachers’ resources: Advances and issues. Switzerland: Springer.
  • Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: development status and directions. ZDM, 45(5), 633-646.
  • Glasnovic Gracin, D. (2018). Requirements in mathematics textbooks: a five-dimensional analysis of textbook exercises and examples. International Journal of Mathematical Education in Science and Technology, 49(7), 1003-1024.
  • Gueudet, G., Pepin, B., & Trouche, L. (2012). From text to lived resources: Curriculum material and mathematics teacher development. London: Springer.
  • Güven, D. (2017). Ortaokul 6.sınıf matematik ders kitabı. Ankara: MEGA Yayıncılık.
  • Han, S. Y., Rosli, R., Capraro, R. M., & Capraro, M. M. (2011). The textbook analysis on probability: The case of Korea, Malaysia and US textbooks. Research in Mathematical Education, 15 (2), 127-140.
  • Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for research in mathematics education, 28(5), 524-549.
  • Herbst, P. (2008). The teacher and the task. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the 32nd Conference of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 125–131). Mexico: Morelia University.
  • Hiebert, J., Carpenter, T.P., Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A., & Wearne, D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12-21.
  • ICMT (2014). Conference on mathematics textbook research and development (ICMT-2014). Southampton, UK.
  • Jones, D. L., & Tarr, J. E. (2007). An examination of the levels of cognitive demand required by probability tasks in middle grades mathematics textbooks. Statistics Education Research Journal, 6(2), 4-27.
  • Jones, K., & Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal of Mathematics Teacher Education, 19(2-3), 105-121.
  • Kasar, N. (2013). Matematik derslerinde alternatif çözüm yollarına ve farklı soru türlerine ne ölçüde yer verilmektedir?: Sınıf içi uygulamalardan örnekler (Yayımlanmamış yüksek lisans tezi). Gaziantep Üniversitesi, Sosyal Bilimler Enstitüsü, Gaziantep.
  • Kerpiç, A., & Bozkurt, A. (2011). Etkinlik tasarım ve uygulama prensipleri çerçevesinde 7. sınıf matematik ders kitabı etkinliklerinin değerlendirilmesi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(16), 303-318.
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
  • Lappan, G., & Phillips, E. (2009). Challenges in US mathematics education through a curriculum developer lens. Educational Designer, 1(3). Retrieved from: http://www.educationaldesigner.org/ed/volume1/issue3/article11/
  • Leikin, R., & Kloss, Y. (2011). Mathematical creativity of 8th and 10th grade students. In M. Pytlak, T. Rowland and E. Swoboda (Eds), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp.1084-1093). Poland: University of Rzeszów.
  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66(3), 349-371.
  • Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of Multiple Solution Connecting Tasks: Do Students' Attitudes Support Teachers' Reluctance?. Focus on Learning Problems in Mathematics, 28(1), 1-22.
  • Milli Eğitim Bakanlığı [MEB] (2017). Ortaokul 5.sınıf matematik ders kitabı. Ankara: MEB Devlet Kitapları.
  • Milli Eğitim Bakanlığı [MEB] (2005). İlköğretim matematik dersi (6, 7., ve 8. Sınıflar) matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı.
  • Niss, M. (1993). Assessment in mathematics education and its effects: An introduction. In Investigations into assessment in mathematics education (pp. 1-30). Dordrecht: Springer.
  • O'Sullivan, B. (2017). An analysis of mathematical tasks used at second-level in Ireland (Unpublished doctoral dissertation). Dublin City University, Ireland.
  • Özgeldi, M., & Esen, Y. (2010). Analysis of mathematical tasks in Turkish elementary school mathematics textbooks. Procedia-Social and Behavioral Sciences, 2(2), 2277-2281.
  • Özgen, K. (2017). Matematiksel öğrenme etkinliği türlerine yönelik kuramsal bir çalışma: fonksiyon kavramı örneklemesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1437-1464.
  • Pektaş, Y. Ü. (2017). Ortaokul 8.sınıf matematik ders kitabı. Ankara: Öğün yayınları.
  • Reçber, H., & Sezer, R. (2018). 8. sınıf matematik ders kitabındaki etkinliklerin bilişsel düzeyinin programdakilerle karşılaştırılması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 51(1), 55-76.
  • Remillard, J. T. (2011). Modes of engagement: Understanding teachers’ transactions with mathematics curriculum resources. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 105–122). Dordrecht: Springer.
  • Sawada, T. (1997). Developing lesson plans. In J. Becker, & S. Shimada (Eds.), The open-ended approach: A new proposal for teaching mathematics (pp. 23-35). National Council of Teachers of Mathematics.
  • Schmidt, W. H. (2012). Measuring content through textbooks: The cumulative effect of middle-school tracking. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 143–160). Dordrecht: Springer.
  • Schmidt,W. H.,McKnight, C. C., Valverde, G. A., Houang, R. T., &Wiley, D. E. (1997). Many visions, manyaims: A cross-national investigation of curricular intentions in school mathematics. Dordrecht: Kluwer Academic Publishers.
  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 29(3), 75-80.
  • Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Strawhun, B. T. F. (2005). Moving from rhetoric to praxis: Issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. The Journal of Mathematical Behavior, 24(3-4), 287-301.
  • Singer, M., & Voica, C. (2003). Perception of infinity. Does it really help in problem solving? In A. Rogerson (Ed.), Proceedings of the 6th international conference of the decidable and the undecidable in mathematics education (pp. 252–256). Brno: The Mathematics Education into the 21st Century Project.
  • Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practise. Mathematics Teaching in the Middle School, 3(5), 344–350.
  • Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80.
  • Stein, M. K., & Smith, M. S. (1998a). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275.
  • Stein, M. K., Smith, M. S., Henningsen, M. A. ve Silver, E. A. (2000). Implementing standards-based mathematics instructions: A casebook for professional development. New York: Teachers College.
  • Swan, M. (2005). Improving learning in mathematics: challenges and strategies. Sheffield: Teaching and Learning Division, Department for Education and Skills Standards Unit.
  • Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Teacher Education, 10(4-6), 217-237.
  • Swan, M. (2008). Designing a multiple representation learning experience in secondary algebra. Educational Designer, 1(1). Retrieved from: http://www.educationaldesigner.org/ed/volume1/issue1/article3/.
  • Tsamir, P., Tirosh, D., Tabach, M., & Levenson, E. (2010). Multiple solution methods and multiple outcomes—is it a task for kindergarten children?. Educational Studies in Mathematics, 73(3), 217-231.
  • Uğurel, I., Bukova-Güzel, E., & Kula, S. (2010). Matematik öğretmenlerinin öğrenme etkinlikleri hakkındaki görüşleri ve deneyimleri. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, 28, 103-123.
  • Valverde, G. A., Bianchi, L. J.,Wolfe, R. G., Schmidt,W. H., & Houang, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbook. Dordrecht, The Netherlands: Kluwer.
  • Watson, A., & Mason, J. (2007). Taken-as-shared: A review of common assumptions about mathematical tasks in teacher education. Journal of Mathematics Teacher Education, 10(4-6), 205-215.
  • Watson, A., Ohtani, M., Ainley, J., Frant, J .B., Doorman, M., Kieran, C., Leung, A., Margolinas, C., Sullivan, P., Thompson, D. & Yang, Y. (2013). Task design in mathematics education. In C. Margolinas (Ed.). Proceedings of ICMI Study 22 (Vol. 1, pp. 9-16). UK: Oxford University.
  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27 (4), 458-477.
  • Yang, D. C., & Lin, Y. C. (2014). A comparison of functions in middle school textbooks among Finland, Singapore and Taiwan. In K. Jones, C. Bokhove, G. Howson & L. Fan (Eds). Proceedings of the International Conference on Mathematics Textbook Research and Development (ICMT-2014) (pp. 505 – 510). UK: University of Southampton.
  • Yang, D. C., Tseng, Y. K., & Wang, T. L. (2017). A comparison of geometry problems in middle-grade mathematics textbooks from Taiwan, Singapore, Finland, and the United States. Eurasia Journal of Mathematics Science and Technology Education, 13(7), 2841-2857.
  • Zhu, Y., & Fan, L. (2006). Focus on the representation of problem types in intended curriculum: A comparison of selected mathematics textbooks from Mainland China and the United States. International Journal of Science and Mathematics Education, 4(4), 609-626.

An Examination of Tasks in Elementary School Mathematics Textbooks in Terms of Multiple Outcomes and Multiple Solution Methods

Yıl 2020, Cilt: 7 Sayı: 4, 214 - 235, 23.12.2020

Öz

This study aims to explore the extent to which elementary level mathematics textbooks present mathematical tasks with multiple correct outcomes and multiple solution methods. Textbook tasks are examined in terms of whether they have (i) multiple correct outcomes, (ii) a single correct outcome, (iii) multiple solution methods, and (iv) a single solution method. Further analysis is carried out on tasks with multiple correct outcomes in order to show if these outcomes are (i) finite (fixed or variable) or (ii) infinite. To this aim, four elementary level mathematics textbooks (one textbook from each of 5th, 6th, 7th, and 8th grade) are analysed. The data overall show that the tasks mainly require one solution method and they are largely closed-ended. The percentage of the tasks which has a fixed number of correct outcomes (either one correct outcome or the numbers of correct outcomes is fixed) is 75.5%. Further, the 5th grade textbook is different and presents more tasks with multiple outcomes and multiple solution methods. It is also found that only two tasks with infinite correct outcomes are presented in all four books. These findings are discussed with regard to higher order thinking skills, creativity and roles assigned to students, and some conclusions are drawn from findings for textbooks and curriculum studies.

Proje Numarası

-

Kaynakça

  • Bayazit, I. (2013). Quality of the tasks in the new Turkish elementary mathematics textbooks: The case of proportional reasoning. International Journal of Science and Mathematics Education, 11(3), 651-682.
  • Bell, A. (1993). Principles for the design of teaching. Educational Studies in Mathematics, 24(1), 5–34.
  • Bilen, O. (2017). Ortaokul 7.sınıf matematik ders kitabı. Ankara: Gizem yayıncılık.
  • Bingölbali, F., Gören, A. E., & Arslan, S. (2016). Matematik öğretmenlerinin ders kitaplarını okuma düzeyleri: öğretim programının hedefleri doğrultusunda bir inceleme. Turkish Journal of Computer and Mathematics Education, 7(2), 460-485.
  • Bingölbali, F. (2017). Matematik öğretmenlerinin ders kitaplarını okuma yeterliklerinin incelenmesi ve bir mesleki gelişim programı önerisi (Yayımlanmamış doktora tezi). Gaziantep Üniversitesi, Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Bingolbali, E. (2011). Multiple solutions to problems in mathematics teaching: Do teachers really value them?. Australian Journal of Teacher Education, 36(1), 18-31.
  • Bingolbali, E. (2020). An analysis of questions with multiple solution methods and multiple outcomes in mathematics textbooks. International Journal of Mathematical Education in Science and Technology, 51(5), 669-687.
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40.
  • Brändström, A. (2005). Differentiated tasks in mathematics textbooks: An analysis of the levels of difficulty (Unpublished doctoral dissertation). Luleå Tekniska Universitet, Sweden.
  • Burkhardt, H., & Swan, M. (2013). Task design for systemic improvement: Principles and frameworks. In C. Margolinas (Ed.) Task design in mathematics education, Proceedings of ICMI Study 22 (pp. 431–439). UK: Oxford University.
  • Cai, J. (1995). A cognitive analysis of US and Chinese students' mathematical performance on tasks involving computation, simple problem solving, and complex problem solving. Journal for Research in Mathematics Education. Monograph No.7, i-151.
  • Cai, J. (2000). Mathematical thinking involved in US and Chinese students' solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2(4), 309-340.
  • De Lange, J. (1996). Using and applying mathematics in education. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International handbook of mathematics education (pp. 49-98).Dordrecht: Kluwer Academic Publishers.
  • Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23(2), 167-180.
  • Dyer, M., & Moynihan, C. (2000). Open-ended question in elementary mathematics instruction & assessment. Larchmont, N.Y. : Eye On Education.
  • Fan, L., Trouche, L., Qi, C., Rezat, S., & Visnovska, J. (Eds.). (2018). Research on mathematics textbooks and teachers’ resources: Advances and issues. Switzerland: Springer.
  • Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: development status and directions. ZDM, 45(5), 633-646.
  • Glasnovic Gracin, D. (2018). Requirements in mathematics textbooks: a five-dimensional analysis of textbook exercises and examples. International Journal of Mathematical Education in Science and Technology, 49(7), 1003-1024.
  • Gueudet, G., Pepin, B., & Trouche, L. (2012). From text to lived resources: Curriculum material and mathematics teacher development. London: Springer.
  • Güven, D. (2017). Ortaokul 6.sınıf matematik ders kitabı. Ankara: MEGA Yayıncılık.
  • Han, S. Y., Rosli, R., Capraro, R. M., & Capraro, M. M. (2011). The textbook analysis on probability: The case of Korea, Malaysia and US textbooks. Research in Mathematical Education, 15 (2), 127-140.
  • Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for research in mathematics education, 28(5), 524-549.
  • Herbst, P. (2008). The teacher and the task. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the 32nd Conference of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 125–131). Mexico: Morelia University.
  • Hiebert, J., Carpenter, T.P., Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A., & Wearne, D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12-21.
  • ICMT (2014). Conference on mathematics textbook research and development (ICMT-2014). Southampton, UK.
  • Jones, D. L., & Tarr, J. E. (2007). An examination of the levels of cognitive demand required by probability tasks in middle grades mathematics textbooks. Statistics Education Research Journal, 6(2), 4-27.
  • Jones, K., & Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal of Mathematics Teacher Education, 19(2-3), 105-121.
  • Kasar, N. (2013). Matematik derslerinde alternatif çözüm yollarına ve farklı soru türlerine ne ölçüde yer verilmektedir?: Sınıf içi uygulamalardan örnekler (Yayımlanmamış yüksek lisans tezi). Gaziantep Üniversitesi, Sosyal Bilimler Enstitüsü, Gaziantep.
  • Kerpiç, A., & Bozkurt, A. (2011). Etkinlik tasarım ve uygulama prensipleri çerçevesinde 7. sınıf matematik ders kitabı etkinliklerinin değerlendirilmesi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(16), 303-318.
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
  • Lappan, G., & Phillips, E. (2009). Challenges in US mathematics education through a curriculum developer lens. Educational Designer, 1(3). Retrieved from: http://www.educationaldesigner.org/ed/volume1/issue3/article11/
  • Leikin, R., & Kloss, Y. (2011). Mathematical creativity of 8th and 10th grade students. In M. Pytlak, T. Rowland and E. Swoboda (Eds), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp.1084-1093). Poland: University of Rzeszów.
  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66(3), 349-371.
  • Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of Multiple Solution Connecting Tasks: Do Students' Attitudes Support Teachers' Reluctance?. Focus on Learning Problems in Mathematics, 28(1), 1-22.
  • Milli Eğitim Bakanlığı [MEB] (2017). Ortaokul 5.sınıf matematik ders kitabı. Ankara: MEB Devlet Kitapları.
  • Milli Eğitim Bakanlığı [MEB] (2005). İlköğretim matematik dersi (6, 7., ve 8. Sınıflar) matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı.
  • Niss, M. (1993). Assessment in mathematics education and its effects: An introduction. In Investigations into assessment in mathematics education (pp. 1-30). Dordrecht: Springer.
  • O'Sullivan, B. (2017). An analysis of mathematical tasks used at second-level in Ireland (Unpublished doctoral dissertation). Dublin City University, Ireland.
  • Özgeldi, M., & Esen, Y. (2010). Analysis of mathematical tasks in Turkish elementary school mathematics textbooks. Procedia-Social and Behavioral Sciences, 2(2), 2277-2281.
  • Özgen, K. (2017). Matematiksel öğrenme etkinliği türlerine yönelik kuramsal bir çalışma: fonksiyon kavramı örneklemesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1437-1464.
  • Pektaş, Y. Ü. (2017). Ortaokul 8.sınıf matematik ders kitabı. Ankara: Öğün yayınları.
  • Reçber, H., & Sezer, R. (2018). 8. sınıf matematik ders kitabındaki etkinliklerin bilişsel düzeyinin programdakilerle karşılaştırılması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 51(1), 55-76.
  • Remillard, J. T. (2011). Modes of engagement: Understanding teachers’ transactions with mathematics curriculum resources. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 105–122). Dordrecht: Springer.
  • Sawada, T. (1997). Developing lesson plans. In J. Becker, & S. Shimada (Eds.), The open-ended approach: A new proposal for teaching mathematics (pp. 23-35). National Council of Teachers of Mathematics.
  • Schmidt, W. H. (2012). Measuring content through textbooks: The cumulative effect of middle-school tracking. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 143–160). Dordrecht: Springer.
  • Schmidt,W. H.,McKnight, C. C., Valverde, G. A., Houang, R. T., &Wiley, D. E. (1997). Many visions, manyaims: A cross-national investigation of curricular intentions in school mathematics. Dordrecht: Kluwer Academic Publishers.
  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 29(3), 75-80.
  • Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Strawhun, B. T. F. (2005). Moving from rhetoric to praxis: Issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. The Journal of Mathematical Behavior, 24(3-4), 287-301.
  • Singer, M., & Voica, C. (2003). Perception of infinity. Does it really help in problem solving? In A. Rogerson (Ed.), Proceedings of the 6th international conference of the decidable and the undecidable in mathematics education (pp. 252–256). Brno: The Mathematics Education into the 21st Century Project.
  • Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practise. Mathematics Teaching in the Middle School, 3(5), 344–350.
  • Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80.
  • Stein, M. K., & Smith, M. S. (1998a). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275.
  • Stein, M. K., Smith, M. S., Henningsen, M. A. ve Silver, E. A. (2000). Implementing standards-based mathematics instructions: A casebook for professional development. New York: Teachers College.
  • Swan, M. (2005). Improving learning in mathematics: challenges and strategies. Sheffield: Teaching and Learning Division, Department for Education and Skills Standards Unit.
  • Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Teacher Education, 10(4-6), 217-237.
  • Swan, M. (2008). Designing a multiple representation learning experience in secondary algebra. Educational Designer, 1(1). Retrieved from: http://www.educationaldesigner.org/ed/volume1/issue1/article3/.
  • Tsamir, P., Tirosh, D., Tabach, M., & Levenson, E. (2010). Multiple solution methods and multiple outcomes—is it a task for kindergarten children?. Educational Studies in Mathematics, 73(3), 217-231.
  • Uğurel, I., Bukova-Güzel, E., & Kula, S. (2010). Matematik öğretmenlerinin öğrenme etkinlikleri hakkındaki görüşleri ve deneyimleri. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, 28, 103-123.
  • Valverde, G. A., Bianchi, L. J.,Wolfe, R. G., Schmidt,W. H., & Houang, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbook. Dordrecht, The Netherlands: Kluwer.
  • Watson, A., & Mason, J. (2007). Taken-as-shared: A review of common assumptions about mathematical tasks in teacher education. Journal of Mathematics Teacher Education, 10(4-6), 205-215.
  • Watson, A., Ohtani, M., Ainley, J., Frant, J .B., Doorman, M., Kieran, C., Leung, A., Margolinas, C., Sullivan, P., Thompson, D. & Yang, Y. (2013). Task design in mathematics education. In C. Margolinas (Ed.). Proceedings of ICMI Study 22 (Vol. 1, pp. 9-16). UK: Oxford University.
  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27 (4), 458-477.
  • Yang, D. C., & Lin, Y. C. (2014). A comparison of functions in middle school textbooks among Finland, Singapore and Taiwan. In K. Jones, C. Bokhove, G. Howson & L. Fan (Eds). Proceedings of the International Conference on Mathematics Textbook Research and Development (ICMT-2014) (pp. 505 – 510). UK: University of Southampton.
  • Yang, D. C., Tseng, Y. K., & Wang, T. L. (2017). A comparison of geometry problems in middle-grade mathematics textbooks from Taiwan, Singapore, Finland, and the United States. Eurasia Journal of Mathematics Science and Technology Education, 13(7), 2841-2857.
  • Zhu, Y., & Fan, L. (2006). Focus on the representation of problem types in intended curriculum: A comparison of selected mathematics textbooks from Mainland China and the United States. International Journal of Science and Mathematics Education, 4(4), 609-626.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Araştırma Makalesi
Yazarlar

Erhan Bingölbali 0000-0001-5373-9341

Ferhan Bingölbali 0000-0003-0847-1328

Proje Numarası -
Yayımlanma Tarihi 23 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 4

Kaynak Göster

APA Bingölbali, E., & Bingölbali, F. (2020). Çok Doğru Cevaplı ve Çok Çözüm Metotlu Etkinliklerin Ortaokul Matematik Ders Kitaplarındaki Yeri. International Journal of Educational Studies in Mathematics, 7(4), 214-235.