Araştırma Makalesi
BibTex RIS Kaynak Göster

PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS

Yıl 2024, , 1 - 7, 29.06.2024
https://doi.org/10.46460/ijiea.1206901

Öz

As an antibacterial agent with pleasant fragrance, citral (CIT) indicates hydrophobic character, and therefore has low water solubility. In this study, Pickering emulsions were formed and polyvinyl alcohol (PVA)/whey protein hydrophilic nanofibers were coated on PP melt blown non-woven surfaces by electrospinning method. In this context, hydrophobic citral essential oil is stabilized with β-cyclodextrin (β-CD) in the electrospinning process. PVA and whey protein polymer blend were used as nanofiber matrices. The morphological, physical, and thermal properties of the β-CD/citral complexes were investigated in PVA/whey protein nanofiber-coated PP non-wovens at various β-CD levels (1:2, 1:4 and 1:6). Furthermore, zone inhibition procedure was performed to evaluate antibacterial activity of the samples against Gram (+) (Staphylococcus aureus ATCC® 25923) and Gram (-) (Escherichia coli ATCC® 25922, and Pseudomonas aeruginosa ATCC® 27853) bacteria. The morphology of fibers showed that all obtained nanofiber-coated PP surfaces were in the range with 216 - 330 nm average fiber diameter. Fourier Transform Infrared (FT-IR) and thermal gravimetric analysis (TGA) thermograms revealed that citrals were successfully integrated into the bio-based nanofibers. As the amount of citral increased (i.e., the β-CD/citral increased), the thermal resistance of bio-based nanofiber coated PP surfaces increased. Antibacterial activity indicated the citral-loaded nanofiber-coated PP surfaces were most effective against Escherichia coli, while none of the samples have antibacterial activity against Pseudomonas aeruginosa. Overall, the results displayed that the fabricated PVA/whey protein nanofiber-coated PP samples integrated with Pickering emulsion of citral stabilized have promising wound dressing applications.

Destekleyen Kurum

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Kaynakça

  • Zhang, Y., Wei, J., Chen, H., Song, Z., Guo, H., Yuan, Y., & Yue, T. (2020). Antibacterial activity of essential oils against Stenotrophomonas maltophilia and the effect of citral on cell membrane. LWT, 117:108667.
  • Souza, V. V. M. A., Almeida, J. M., Barbosa, L. N., & Silva, N. C. C. (2022). Citral, carvacrol, eugenol and thymol: antimicrobial activity and its application in food. Journal of Essential Oil Research, 1-14.
  • Saddiq, A. A., & Khayyat, S. A. (2010). Chemical and antimicrobial studies of monoterpene: Citral. Pesticide Biochemistry and Physiology, 98(1), 89-93.
  • Lu, W. C., Huang, D. W., Wang, C. C., Yeh, C. H., Tsai, J. C., Huang, Y. T., & Li, P. H. (2018). Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of food and drug analysis, 26(1), 82-89.
  • Shi, C., Song, K., Zhang, X., Sun, Y., Sui, Y., Chen, Y., Xia, X. (2016). Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. Plos one, 11(7):e0159006.
  • Silva, C. D. B. D., Guterres, S. S., Weisheimer, V., & Schapoval, E. E. (2008). Antifungal activity of the lemongrass oil and citral against Candida spp. Brazilian Journal of Infectious Diseases, 12(1), 63-66.
  • Chao, S. C., Young, D. G., & Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of essential oil research, 12(5), 639-649.
  • Mokarizadeh, M., Kafil, H. S., Ghanbarzadeh, S., Alizadeh, A., & Hamishehkar, H. (2017). Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative. Research in Pharmaceutical Sciences, 12(5), 409.
  • Parin, F. N., Terzioğlu, P., Sicak, Y., Yildirim, K., & Öztürk, M. (2021). Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. The Journal of The Textile Institute, 112(4), 628-635.
  • Parın, F. N., & Yıldırım, K. (2021). Preparation and characterisation of vitamin-loaded electrospun nanofibres as promising transdermal patches. Fibres & Textiles in Eastern Europe.
  • Parın, F. N., Aydemir, Ç. İ., Taner, G., & Yıldırım, K. (2021). Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility. Journal of Industrial Textiles, 1528083721997185.
  • Parın, F. N., & Parın, U. (2022). Spirulina Biomass‐Loaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect, 7(8):e202104148.
  • Parin, F. N., & Terzioğlu, P. (2022). Electrospun Porous Biobased Polymer Mats for Biomedical Applications, In Advanced Functional Porous Materials. Springer, Cham., 539-586.
  • Çobanoğlu, B., Parin, F. N., & Yildirim, K. (2021). Production and characterization of n-halamine based polyvinyl chloride (pvc) nanowebs. Textile and Apparel, 31(3), 147-155.
  • Hu, J. W., Yen, M. W., Wang, A. J., & Chu, I. M. (2018). Effect of oil structure on cyclodextrin-based Pickering emulsions for bupivacaine topical application. Colloids and Surfaces B: Biointerfaces, 161, 51-58.
  • Li, C., Luo, X., Li, L., Cai, Y., Kang, X., & Li, P. (2022). Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings. International Journal of Biological Macromolecules, 209, 344-355.
  • Tatlisu, N. B., Yilmaz, M. T., & Arici, M. (2019). Fabrication and characterization of thymol-loaded nanofiber mats as a novel antimould surface material for coating cheese surface. Food Packaging and Shelf Life, 21:100347.
  • Kim, J. H., Lee, H., Jatoi, A. W., Im, S. S., Lee, J. S., & Kim, I. S. (2016). Juniperus chinensis extracts loaded PVA nanofiber: Enhanced antibacterial activity. Materials Letters, 181, 367–370.
  • Parın, F. N., Ullah, A., Yeşilyurt, A., Parın, U., Haider, M. K., & Kharaghani, D. (2022). Development of PVA–psyllium husk meshes via emulsion electrospinning: Preparation, characterization, and antibacterial activity. Polymers, 14(7), 1490.
  • Iqbal, B., Muhammad, N., Rahim, A., Iqbal, F., Sharif, F., Safi, S. Z., ... & Rehman, I. U. (2019). Development of collagen/PVA composites patches for osteochondral defects using a green processing of ionic liquid. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(10), 590-596.
  • El Moujahed, S., Errachidi, F., Abou Oualid, H., Botezatu-Dediu, A. V., Chahdi, F. O., Rodi, Y. K., & Dinica, R. M. (2022). Extraction of insoluble fibrous collagen for characterization and crosslinking with phenolic compounds from pomegranate byproducts for leather tanning applications. RSC advances, 12(7), 4175-4186.
  • Agudelo‐Cuartas, C., Granda‐Restrepo, D., Sobral, P. J., & Castro, W. (2021). Determination of mechanical properties of whey protein films during accelerated aging: application of FTIR profiles and chemometric tools. Journal of Food Process Engineering, 44(5):e13477.
  • Agudelo-Cuartas, C., Granda-Restrepo, D., Sobral, P. J., Hernandez, H., & Castro, W. (2020). Characterization of whey protein-based films incorporated with natamycin and nanoemulsion of α-tocopherol. Heliyon, 6(4):e03809.
  • Ghadetaj, A., Almasi, H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food packaging and shelf life, 16, 31-40.
  • Tian, H., Lu, Z., Li, D., & Hu, J. (2018). Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chemistry, 248, 78-85.
  • Zhou, W., Lin, J., Wu, R., Lin, W., Ge, F., & Huang, H. (2005). Direct synthesis of lemonile from litsea cubeba oil. Fine Chem, 22, 515-517.
  • Peng, R., Zhang, J., Du, C., Li, Q., Hu, A., Liu, C., ... & Yin, W. (2021). Investigation of the Release Mechanism and Mould Resistance of Citral-Loaded Bamboo Strips. Polymers, 13(19), 3314.
  • Ma, H., Zhao, Y., Lu, Z., Xing, R., Yao, X., Jin, Z., ... & Yu, F. (2020). Citral-loaded chitosan/carboxymethyl cellulose copolymer hydrogel microspheres with improved antimicrobial effects for plant protection. International Journal of Biological Macromolecules, 164, 986-993.
  • Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: a review. Comprehensive reviews in food science and food safety, 12(1), 40-53.
  • Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial pathogenesis, 120, 198-203.
  • Porfírio, E. M., Melo, H. M., Pereira, A. M. G., Cavalcante, T., Gomes, G. A., Carvalho, M., & Costa, R. (2017). In vitro antibacterial and antibiofilm activity of lippia alba essential oil, citral, and carvone against Staphylococcus aureus. The Scientific World Journal, 124(2), 379–388.
  • Silva-Angulo, A. B., Zanini, S. F., Rodrigo, D., Klein, G., & Martine, A. (2015). Comparative study of the effects of citral on the growth and injury of Listeria innocua and Listeria monocytogenes cells. Plos One, 10(2).
  • Belda-Galbis, C. M., Pina-Perez, M. C., Leufven, A., Martinez, A., & Rodrigo, D. (2013). Impact assessment of carvacrol and citral effect on Escherichia coli K12 and Listeria innocua growth. Food Control, 33(2), 536–544.
  • Kang, S., Li, X., Xing, Z., Liu, X., Bai, X., Yang, Y., & Shi, C. (2022). Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control, 135, 108775.
  • Tao, N., OuYang, Q., & Jia, L. (2014). Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control, 41, 116-121.
  • Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., ... & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial agents and chemotherapy, 49(6), 2474-2478.
  • Nimmagadda, A., Liu, X., Teng, P., Su, M., Li, Y., Qiao, Q., ... & Cai, J. (2017). Polycarbonates with potent and selective antimicrobial activity toward gram-positive bacteria. Biomacromolecules, 18(1), 87-95.
  • Tavares, T. D., Antunes, J. C., Padrão, J., Ribeiro, A. I., Zille, A., Amorim, M. T. P., ... & Felgueiras, H. P. (2020). Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 9(6), 314.

POTANSİYEL MEDİKAL UYGULAMALAR İÇİN PVA/WHEY PROTEİN NANOLİF KAPLI PP ERİYİK ÜFLEMELİ DOKUSUZ YÜZEYLERE ENTEGRE EDİLMİŞ SİTRAL STABİLİZE PİCKERİNG EMÜLSİYONLAR

Yıl 2024, , 1 - 7, 29.06.2024
https://doi.org/10.46460/ijiea.1206901

Öz

Hoş kokulu bir antibakteriyel madde olarak sitral (SIT) hidrofobik karakter sergiler ve bu sebeple suda çözünürlüğü düşüktür. Bu çalışmada Pickering emülsiyonları oluşturulmuş ve elektroçekim yöntemi ile polipropilen (PP) eriyik üflemeli dokusuz yüzeylere polivinil alkol (PVA)/whey proteini hidrofilik nanofiberler kaplanmıştır. Bu bağlamda, elektroçekim yönteminde hidrofobik sitral uçucu yağı β-siklodekstrin (β-CD) ile stabilize edilmiştir. Nanofiber matris olarak PVA ve whey proteini polimer karışımı kullanılmıştır. β-CD/sitral komplekslerinin morfolojik, fiziksel ve termal özellikleri PVA/whey proteini nanofiber kaplı PP dokusuz dokumalarda çeşitli β-CD seviyelerinde (1: 2, 1: 4 ve 1:6) araştırılmıştır. Ayrıca, numunelerin Gram (+) (Staphylococcus aureus ATCC ® 25923) ve Gram (-) (Escherichia coli ATCC ® 25922 ve Pseudomonas aeruginosa ATCC ® 27853) bakterilerine karşı antibakteriyel aktivitesini değerlendirmek için zon inhibisyon prosedürü uygulanmıştır. Liflerin morfolojisi, elde edilen tüm nanofiber kaplı PP yüzeylerin 216 - 330 nm ortalama lif çapı aralığında olduğunu göstermiştir. Fourier Dönüşümü Kızılötesi (FT-IR) spektroskopisi ve termal gravimetrik analiz (TGA) termogramları, sitralin biyo bazlı nanofiberlere başarıyla entegre edildiğini ortaya koymuştur. Sitral miktarı arttıkça (yani β-CD/sitral arttıkça), biyobazlı nanofiber kaplı PP yüzeylerin ısıl direnci artmıştır. Antibakteriyel aktivite, sitral yüklü nanofiber kaplı PP yüzeylerinin Escherichia coli bakterisine karşı en etkili olduğunu gösterirken, örneklerin hiçbirinin Pseudomonas aeruginosa bakterisine karşı antibakteriyel aktivitesi olmadığını göstermiştir. Genel olarak, sonuçlar, sitral stabilize Pickering emülsiyonu ile entegre edilmiş PVA/whey proteini nanofiber kaplı PP örneklerinin umut verici yara pansuman uygulamalarına sahip olduğunu göstermiştir.

Kaynakça

  • Zhang, Y., Wei, J., Chen, H., Song, Z., Guo, H., Yuan, Y., & Yue, T. (2020). Antibacterial activity of essential oils against Stenotrophomonas maltophilia and the effect of citral on cell membrane. LWT, 117:108667.
  • Souza, V. V. M. A., Almeida, J. M., Barbosa, L. N., & Silva, N. C. C. (2022). Citral, carvacrol, eugenol and thymol: antimicrobial activity and its application in food. Journal of Essential Oil Research, 1-14.
  • Saddiq, A. A., & Khayyat, S. A. (2010). Chemical and antimicrobial studies of monoterpene: Citral. Pesticide Biochemistry and Physiology, 98(1), 89-93.
  • Lu, W. C., Huang, D. W., Wang, C. C., Yeh, C. H., Tsai, J. C., Huang, Y. T., & Li, P. H. (2018). Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of food and drug analysis, 26(1), 82-89.
  • Shi, C., Song, K., Zhang, X., Sun, Y., Sui, Y., Chen, Y., Xia, X. (2016). Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. Plos one, 11(7):e0159006.
  • Silva, C. D. B. D., Guterres, S. S., Weisheimer, V., & Schapoval, E. E. (2008). Antifungal activity of the lemongrass oil and citral against Candida spp. Brazilian Journal of Infectious Diseases, 12(1), 63-66.
  • Chao, S. C., Young, D. G., & Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of essential oil research, 12(5), 639-649.
  • Mokarizadeh, M., Kafil, H. S., Ghanbarzadeh, S., Alizadeh, A., & Hamishehkar, H. (2017). Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative. Research in Pharmaceutical Sciences, 12(5), 409.
  • Parin, F. N., Terzioğlu, P., Sicak, Y., Yildirim, K., & Öztürk, M. (2021). Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. The Journal of The Textile Institute, 112(4), 628-635.
  • Parın, F. N., & Yıldırım, K. (2021). Preparation and characterisation of vitamin-loaded electrospun nanofibres as promising transdermal patches. Fibres & Textiles in Eastern Europe.
  • Parın, F. N., Aydemir, Ç. İ., Taner, G., & Yıldırım, K. (2021). Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility. Journal of Industrial Textiles, 1528083721997185.
  • Parın, F. N., & Parın, U. (2022). Spirulina Biomass‐Loaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect, 7(8):e202104148.
  • Parin, F. N., & Terzioğlu, P. (2022). Electrospun Porous Biobased Polymer Mats for Biomedical Applications, In Advanced Functional Porous Materials. Springer, Cham., 539-586.
  • Çobanoğlu, B., Parin, F. N., & Yildirim, K. (2021). Production and characterization of n-halamine based polyvinyl chloride (pvc) nanowebs. Textile and Apparel, 31(3), 147-155.
  • Hu, J. W., Yen, M. W., Wang, A. J., & Chu, I. M. (2018). Effect of oil structure on cyclodextrin-based Pickering emulsions for bupivacaine topical application. Colloids and Surfaces B: Biointerfaces, 161, 51-58.
  • Li, C., Luo, X., Li, L., Cai, Y., Kang, X., & Li, P. (2022). Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings. International Journal of Biological Macromolecules, 209, 344-355.
  • Tatlisu, N. B., Yilmaz, M. T., & Arici, M. (2019). Fabrication and characterization of thymol-loaded nanofiber mats as a novel antimould surface material for coating cheese surface. Food Packaging and Shelf Life, 21:100347.
  • Kim, J. H., Lee, H., Jatoi, A. W., Im, S. S., Lee, J. S., & Kim, I. S. (2016). Juniperus chinensis extracts loaded PVA nanofiber: Enhanced antibacterial activity. Materials Letters, 181, 367–370.
  • Parın, F. N., Ullah, A., Yeşilyurt, A., Parın, U., Haider, M. K., & Kharaghani, D. (2022). Development of PVA–psyllium husk meshes via emulsion electrospinning: Preparation, characterization, and antibacterial activity. Polymers, 14(7), 1490.
  • Iqbal, B., Muhammad, N., Rahim, A., Iqbal, F., Sharif, F., Safi, S. Z., ... & Rehman, I. U. (2019). Development of collagen/PVA composites patches for osteochondral defects using a green processing of ionic liquid. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(10), 590-596.
  • El Moujahed, S., Errachidi, F., Abou Oualid, H., Botezatu-Dediu, A. V., Chahdi, F. O., Rodi, Y. K., & Dinica, R. M. (2022). Extraction of insoluble fibrous collagen for characterization and crosslinking with phenolic compounds from pomegranate byproducts for leather tanning applications. RSC advances, 12(7), 4175-4186.
  • Agudelo‐Cuartas, C., Granda‐Restrepo, D., Sobral, P. J., & Castro, W. (2021). Determination of mechanical properties of whey protein films during accelerated aging: application of FTIR profiles and chemometric tools. Journal of Food Process Engineering, 44(5):e13477.
  • Agudelo-Cuartas, C., Granda-Restrepo, D., Sobral, P. J., Hernandez, H., & Castro, W. (2020). Characterization of whey protein-based films incorporated with natamycin and nanoemulsion of α-tocopherol. Heliyon, 6(4):e03809.
  • Ghadetaj, A., Almasi, H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food packaging and shelf life, 16, 31-40.
  • Tian, H., Lu, Z., Li, D., & Hu, J. (2018). Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chemistry, 248, 78-85.
  • Zhou, W., Lin, J., Wu, R., Lin, W., Ge, F., & Huang, H. (2005). Direct synthesis of lemonile from litsea cubeba oil. Fine Chem, 22, 515-517.
  • Peng, R., Zhang, J., Du, C., Li, Q., Hu, A., Liu, C., ... & Yin, W. (2021). Investigation of the Release Mechanism and Mould Resistance of Citral-Loaded Bamboo Strips. Polymers, 13(19), 3314.
  • Ma, H., Zhao, Y., Lu, Z., Xing, R., Yao, X., Jin, Z., ... & Yu, F. (2020). Citral-loaded chitosan/carboxymethyl cellulose copolymer hydrogel microspheres with improved antimicrobial effects for plant protection. International Journal of Biological Macromolecules, 164, 986-993.
  • Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: a review. Comprehensive reviews in food science and food safety, 12(1), 40-53.
  • Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial pathogenesis, 120, 198-203.
  • Porfírio, E. M., Melo, H. M., Pereira, A. M. G., Cavalcante, T., Gomes, G. A., Carvalho, M., & Costa, R. (2017). In vitro antibacterial and antibiofilm activity of lippia alba essential oil, citral, and carvone against Staphylococcus aureus. The Scientific World Journal, 124(2), 379–388.
  • Silva-Angulo, A. B., Zanini, S. F., Rodrigo, D., Klein, G., & Martine, A. (2015). Comparative study of the effects of citral on the growth and injury of Listeria innocua and Listeria monocytogenes cells. Plos One, 10(2).
  • Belda-Galbis, C. M., Pina-Perez, M. C., Leufven, A., Martinez, A., & Rodrigo, D. (2013). Impact assessment of carvacrol and citral effect on Escherichia coli K12 and Listeria innocua growth. Food Control, 33(2), 536–544.
  • Kang, S., Li, X., Xing, Z., Liu, X., Bai, X., Yang, Y., & Shi, C. (2022). Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control, 135, 108775.
  • Tao, N., OuYang, Q., & Jia, L. (2014). Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control, 41, 116-121.
  • Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., ... & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial agents and chemotherapy, 49(6), 2474-2478.
  • Nimmagadda, A., Liu, X., Teng, P., Su, M., Li, Y., Qiao, Q., ... & Cai, J. (2017). Polycarbonates with potent and selective antimicrobial activity toward gram-positive bacteria. Biomacromolecules, 18(1), 87-95.
  • Tavares, T. D., Antunes, J. C., Padrão, J., Ribeiro, A. I., Zille, A., Amorim, M. T. P., ... & Felgueiras, H. P. (2020). Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 9(6), 314.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatma Nur Parın 0000-0003-2048-2951

Ayşenur Yeşilyurt 0000-0002-1370-7588

Uğur Parın 0000-0002-0788-5708

Erken Görünüm Tarihi 29 Haziran 2024
Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 21 Kasım 2022
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Parın, F. N., Yeşilyurt, A., & Parın, U. (2024). PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS. International Journal of Innovative Engineering Applications, 8(1), 1-7. https://doi.org/10.46460/ijiea.1206901
AMA Parın FN, Yeşilyurt A, Parın U. PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS. ijiea, IJIEA. Haziran 2024;8(1):1-7. doi:10.46460/ijiea.1206901
Chicago Parın, Fatma Nur, Ayşenur Yeşilyurt, ve Uğur Parın. “PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS”. International Journal of Innovative Engineering Applications 8, sy. 1 (Haziran 2024): 1-7. https://doi.org/10.46460/ijiea.1206901.
EndNote Parın FN, Yeşilyurt A, Parın U (01 Haziran 2024) PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS. International Journal of Innovative Engineering Applications 8 1 1–7.
IEEE F. N. Parın, A. Yeşilyurt, ve U. Parın, “PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS”, ijiea, IJIEA, c. 8, sy. 1, ss. 1–7, 2024, doi: 10.46460/ijiea.1206901.
ISNAD Parın, Fatma Nur vd. “PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS”. International Journal of Innovative Engineering Applications 8/1 (Haziran 2024), 1-7. https://doi.org/10.46460/ijiea.1206901.
JAMA Parın FN, Yeşilyurt A, Parın U. PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS. ijiea, IJIEA. 2024;8:1–7.
MLA Parın, Fatma Nur vd. “PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS”. International Journal of Innovative Engineering Applications, c. 8, sy. 1, 2024, ss. 1-7, doi:10.46460/ijiea.1206901.
Vancouver Parın FN, Yeşilyurt A, Parın U. PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS. ijiea, IJIEA. 2024;8(1):1-7.

This work is licensed under CC BY-NC 4.0