Research Article
BibTex RIS Cite

Karayemiş yaprak ekstraktı ile sentezlenen yeşil gümüş nanopartiküllerin antifungal aktivitesi ve optimizasyon prosedürü

Year 2023, Volume: 6 Issue: 1, 1 - 20, 15.04.2023
https://doi.org/10.38001/ijlsb.1168628

Abstract

Mevcut çalışmada, biyolojik indirgeyici ve kaplayıcı olarak Prunus laurocerasus (karayemiş) yaprak ekstraktı kullanılarak gümüş nanopartiküllerin (AgNP'ler) yeşil sentez koşullarını optimize etmek için Box-Behnken tasarımı (BBD) uygulanmıştır. Modelin bağımsız değişkenleri olarak gümüş nitrat (AgNO3) konsantrasyonu (mM), karayemiş yaprakı ekstraktının pH'ı ve reaksiyon sıcaklığı (°C) gibi üç önemli sentez faktörü kullanılmış ve AgNP'lerden kaynaklanan yüzey plazmon rezonansının tepe yoğunluğu bağımlı değişken olarak kullanılmıştır. İstatistiksel analizler, 405 nm'de (2.35 A.U) öngörülen absorbans için optimize edilmiş koşulların, 10 mM AgNO3 konsantrasyonunda, pH 9.0'da ve 50°C sıcaklıkta olduğunu göstermiştir. Geliştirilen modelin geçerliliği doğrulanmış ve altı deneysel çalışmadan elde edilen ortalama absorbans %14.86 hata ile 2.26 (A.U) olarak kaydedilmiştir. Ek olarak, sentezlenen AgNP'ler UV-Vis spektroskopisi (UV), fourier transform kızılötesi spektroskopisi (FT-IR) kullanılarak karakterize edilmiş ve AgNP'lerin morfolojisini ve ortalama boyutunu incelemek için taramalı elektron mikroskobu-enerji dağılımlı X-ışını spektroskopisi (SEM–EDS) kullanılmıştır. Sentezlenen AgNP'ler ayrıca in vitro’da test edilen beş fungal kivi patojeninin tümüne karşı antifungal aktivite göstermiştir. Sentezlenen AgNP'lerin LC50 değerleri Phytopythium vexans, Globisoprangium sylvaticum, G. intermedium, Phytophthora citrophthora ve Rhizoctonia solani için sırasıyla 10.88, 9.30, 7.15, 25.16 ve 53.77 µg/ml idi. Globisporangium türlerinin MIC değerleri (120 µg/ml) haricinde, diğer üç türün hem MIC hem de MFC değerleri 150 µg/ml'nin üzerinde bulunmuştur. Bu çalışmanın sonuçları, karayemiş yaprak ekstraktı kullanılarak sentezlenen AgNP'lerin kivide fungal kök ve kök çürüklüğü hastalıklarının kontrolünde kullanımı için daha fazla araştırılması gerektiğini göstermektedir.

Supporting Institution

Ordu Üniversitesi

Project Number

B-2209

References

  • Referans1. Jain, P.K., et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008. 41: p. 1578–1586.
  • Referans2. Tran, Q.H., and A.T., Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechno, 2018. 9: p. 049501.
  • Referans3. Wei, L., et al., Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Disc. Today, 2015. 20: p. 595–601.
  • Referans4. Lansdown, A.B., A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol Sci., 2010. pp. 16.
  • Referans5. Goia, D.V., and E., Matijević, Preparation of monodispersed metal particles. New. J. Chem., 1998. 11: p. 1203–1208.
  • Referans6. Taleb, A., C. Petit, and M.P. Pileni, Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization. Chem. Mater., 1997. 9: p. 950–959.
  • Referans7. Esumi, K., et al., Preparation and characterization of bimetallic Pd-Cu colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater.,1990. 2: p. 564–567.
  • Referans8. Henglein, A., Reduction of Ag(CN)2-on silver and platinum colloidal nanoparticles. Langmuir, 2001. 17: p. 2329–2333.
  • Referans9. Rodríguez-Sánchez, L., et al., Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B. 2000. 104: p. 9683–9688.
  • Referans10. Zhu, J., et al., Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 2000. 16: p. 6396–6399.
  • Referans11. Pastoriza-Santos, I., and L.M., Liz-Marzán, Formation of PVP-protected metal nanoparticles in DMF. Langmuir, 2002. 18: p. 2888–2895.
  • Referans12. Kröger, N., et al., Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 1999. 286: p. 1129–1132.
  • Referans113. Ahmad, A., et al., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids. Surf. B: Biointer., 2003. 28: p. 313–318.
  • Referans14. Shahverdi, A.R., et al., Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc. Biochem., 2007. 42: p. 919–923.
  • Referans15. Siddiqi, K.S., et al., Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomaterials Research, 2018. 22: p. 1–9.
  • Referans16. Nath, D., and P., Banerjee, Green nanotechnology–a new hope for medical biology. Envir. Toxi. Pharmac., 2013. 36: p. 997–1014.
  • Referans17. Ovais, M., et al., Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol., 2018. 102: p. 6799–6814.
  • Referans18. Gardea-Torresdey, J.L., et al., Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003. 19: p. 1357–1361.
  • Referans19. Shankar, S.S., et al., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Coll. Inter. Sci., 2004. 275: p. 496–502.
  • Referans20. Chandran, S.P., et al., Synthesis of gold nanotriangles and silver nanoparticles using Aloe wera plant extract. Biotech. Progress., 2006. 22: p. 577–583.
  • Referans21. Vilchis-Nestor, A.R., et al., Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Lettters, 2008. 62: p. 3103–3105.
  • Referans22. Sathishkumar, M., et al., Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Coll. Surfac. B: Biointer., 2009. 73: p. 332–338.
  • Referans23. Bar, H., et al., Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Coll. Surf. A: Physicochem. Eng. Aspects., 2009. 348: p. 212–216.
  • Referans24. Bankar, A., et al., Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Coll. Surf. A: Physicochem. Eng. Aspects., 2010. 368: p. 58–63.
  • Referans25. Krishnaraj, C., et al., Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll. Surf. B: Biointerfaces, 2010. 76: p. 50–56.
  • Referans26. Vidhu, V.K., S.A. Aromal, and D. Philip, Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectroc. Acta Part A: Molec. Biomolecular Spectr., 2011. 83: p. 392–397.
  • Referans27. Raja, K., A. Saravanakumar, and R. Vijayakumar, Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectroc. Acta Part A: Molec. Biomolecular Spectr., 2012. 97: p. 490–494.
  • Referans28. Geetha, A.R., et al., Optimization of green synthesis of silver nanoparticles from leaf extracts of Pimenta dioica (allspice). The Sci. World J., 2013: 5 pages.
  • Referans29. Shetty, P., et al., Synthesis, characterization and antimicrobial activity of Alstonia scholaris bark-extract-mediated silver nanoparticles. J Nanostruct. Chem., 2014. 4: p. 161–170.
  • Referans30. Pourmortazavi, S.M., et al., Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectroc. Acta Part A: Molec. Biomolecular Spectr., 2015. 136: p. 1249–1254.
  • Referans31. Ali, M., et al., Inhibition of Phytophythora parasitica, P. capsici, by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 2015. 105: p. 1183–1190.
  • Referans32. Ravichandran, V., et al., Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 2016. 180: p. 264–267.
  • Referans33. Karthik, R., et al., Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. J. Photochemistry Photobiology B: Bio., 2017. 170: p. 164–172.
  • Referans34. Kumar, B., et al., Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Bio. Sci., 2017. 24: p. 45–50.
  • Referans35. Chahardoli, A., N. Karimi, and A. Fattahi, Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy. Adv. Pow. Techno., 2017. 29: p. 202–210.
  • Referans36. Arya, K., et al., Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artificial Cells, Nanomedicine, Biotech., 2018. 46: p. 985–993.
  • Referans37. Satpathy, S., et al., Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artificial Cells, Nanomedicine Biotech., 2018. 46: p. 71–85.
  • Referans38. Behravan, M., et al., Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Internat. J. Biol. Macromolec., 2019. 124: p. 148–154.
  • Referans39. Maghsoudy, N., et al., Biosynthesis of ag and fe nanoparticles using Erodium cicutarium; study, optimization, and modeling of the antibacterial properties using response surface methodology. J. Nanostruc. Chem., 2019. 9: p. 203–216.
  • Referans40. Ghojavand, S., M. Madani, and J. Karimi, Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of Felty germander. J. Inorganic Organometal. Polymers Mater., 2020. 30: p. 2987–2997.
  • Referans41. Venkatadri, B., et al., Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J. Bio. Sci., 2020. 27: p. 2980–2986.
  • Referans42. Fatimah, I., et al., Ultrasound-assisted biosynthesis of silver and gold nanoparticles using Clitoria ternatea flower. South African Journal of Chemical Engineering, 2020. 34: p. 97–106.
  • Referans43. Bharadwaj, K.K., Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-np). Nanomaterials, 2021. 11: p. 1999.
  • Referans44. Al-Otibi, F., et al., Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi J. Biolo. Sci., 2021. 28: p. 2229–2235.
  • Referans45. Le, N.T.T., et al., The physicochemical and antifungal properties of eco-friendly silver nanoparticles synthesized by Psidium guajava leaf extract in the comparison with Tamarindus indica. J. Cluster Sci., 2021. 32: p. 601–611.
  • Referans46. Kolaylı, S., et al., Chemical and antioxidant properties of Laurocerasus officinalis Roem. (Cherry Laurel) fruit grown in the Black Sea Region. J. Agric. Food Chem., 2003. 51: p. 7489–94.
  • Referans47. Yesilada, E., et al., Traditional medicine in Türkiye IX. Folk Medicine in Noth-West Anatolia. J Ethnopharmacology, 1999. 64: p. 195–210.
  • Referans48. Sahan, Y., Effect of Prunus laurocerasus L. (cherry laurel) leaf extracts on growth of bread spoilage fungi. Bulg. J.Agricultural Sci., 2011. 17: p. 83–92.
  • Referans49. Karabegovic, I.T., et al., The effect of different extraction techniques on the compositionand antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops Products, 2014. 54: p. 142–148.
  • Referans50. Cochran, W.G., and G.M. Cox, Experimental designs, 2nd ed. New York: Wiley, 1992. pp. 335–375.
  • Referans51. Türkkan, M., Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. J. Agricultural Sci. , 2013. 19: p. 178–187.
  • Referans52. Thompson, D.P., Fungitoxic activity of essential oil components on food storage fungi. Mycologia, 1989. 81: p. 151–153.
  • Referans53. Tripathi, P., et al., Evaluation of some essential oils as botanical fungi toxicants in management of post-harvest rotting of citrus fruits. World J. Micro. Biotech., 2004. 20: p. 317–321.
  • Referans54. Vanaja, M., et al., Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J. Nanostruc. Chem., 2013. 3: p. 1–8.
  • Referans55. Veerasamy, R., et al., Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Society., 2011. 15: p. 113–120.
  • Referans56. Reddy, L.V.A., et al., Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresource Technology, 2008. 99: p. 2242–2249.
  • Referans57. Mondal, P., and M.K. Purkait, Green synthesized iron nanoparticle-embedded pH-responsive PVDF-co-HFP membranes: optimization study for NPs preparation and nitrobenzene reduction. Separ. Sci. Techno., 2017. 52: p. 2338–2355.
  • Referans58. Sun, Q., et al., Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochem. Eng. Aspect., 2014. 444: p. 226–231.
  • Referans59. Sanghi, R., and P. Verma, Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology, 2009. 100: p. 501–504.
  • Referans60. Nikaeen, G., et al., Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and ınvestigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 2020. 10: p. 1–16.
  • Referans61. Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996. 12: p. 788–800.
  • Referans62. Njagi, E.C., et al., Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2011. 27: p. 264–271.
  • Referans63. Gurunathan, S., et al., Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Letters, 2015. 10: p. 35.
  • Referans64. Jeeva, K., et al., Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products, 2014. 52: p. 714–720.
  • Referans65. Reddy, N.J., et al., Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Sci. Eng: C, 2014. 34: p. 115–122.
  • Referans66. Magudapathy, P., et al., Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B: Condensed Matter., 2001. 299: p. 142–146.
  • Referans67. Krishnaraj, C., et al., Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectroc. Acta Part A: Molecular and Biomolecular Spectro., 2012. 93: 95–99.
  • Referans68. Buzea, C. I.I. Pacheco, and K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007. 2: p. 17–64.

Antifungal activity and optimization procedure of silver nanoparticles green synthesized with Prunus laurocerasus L. (cherry laurel) leaf extract

Year 2023, Volume: 6 Issue: 1, 1 - 20, 15.04.2023
https://doi.org/10.38001/ijlsb.1168628

Abstract

In the present study, Box-Behnken design (BBD) was applied to optimize the green synthesis conditions of silver nanoparticles (AgNPs) using Prunus laurocerasus (cherry laurel) leaf extract as a reducing and stabilizing agent. Three important synthesis factors such as the concentration (mM) of silver nitrate (AgNO3), pH of cherry laurel leaf extract and reaction temperature (°C) were used as independent variables of the model, and the absorbance intensity originating from AgNPs was employed as a dependent variable. Statistical analyzes showed that the optimized conditions for the predicted absorbance at 405 nm (2.35 A.U) were determined at a concentration of 10 mM AgNO3, a pH of 9.0, and a temperature of 50°C. The validity of the developed model was verified, and the average absorbance from six experimental runs was recorded as 2.26 (A.U) with an error of 14.86%. In addition, the synthesized AgNPs were characterized using ultraviolet (UV)–visible (Vis) spectroscopy, fourier transform infrared (FT–IR) spectroscopy, and scanning electron microscope (SEM)-energy dispersive X-ray spectroscopy (EDS) was used to examine the morphology and average size of AgNPs. The synthesized AgNPs also showed antifungal activities against all five fungal kiwifruit pathogens tested in vitro. The LC50 values of the synthesized AgNPs were 10.88, 9.30, 7.15, 25.16 and 53.77 µg/ml for Phytopythium vexans, Globisoprangium sylvaticum, G. intermedium, Phytophthora citrophthora and Rhizoctonia solani, respectively. Except for the MIC values of Globisporangium species (120 µg/ml), both MIC and MFC values of the other three species were found to be above 150 µg/ml. The results of this study indicate that AgNPs synthesized using cherry laurel leaf extract should be further investigated for use in the control of fungal root and stem rot diseases in kiwifruit.

Project Number

B-2209

References

  • Referans1. Jain, P.K., et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008. 41: p. 1578–1586.
  • Referans2. Tran, Q.H., and A.T., Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechno, 2018. 9: p. 049501.
  • Referans3. Wei, L., et al., Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Disc. Today, 2015. 20: p. 595–601.
  • Referans4. Lansdown, A.B., A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol Sci., 2010. pp. 16.
  • Referans5. Goia, D.V., and E., Matijević, Preparation of monodispersed metal particles. New. J. Chem., 1998. 11: p. 1203–1208.
  • Referans6. Taleb, A., C. Petit, and M.P. Pileni, Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization. Chem. Mater., 1997. 9: p. 950–959.
  • Referans7. Esumi, K., et al., Preparation and characterization of bimetallic Pd-Cu colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater.,1990. 2: p. 564–567.
  • Referans8. Henglein, A., Reduction of Ag(CN)2-on silver and platinum colloidal nanoparticles. Langmuir, 2001. 17: p. 2329–2333.
  • Referans9. Rodríguez-Sánchez, L., et al., Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B. 2000. 104: p. 9683–9688.
  • Referans10. Zhu, J., et al., Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 2000. 16: p. 6396–6399.
  • Referans11. Pastoriza-Santos, I., and L.M., Liz-Marzán, Formation of PVP-protected metal nanoparticles in DMF. Langmuir, 2002. 18: p. 2888–2895.
  • Referans12. Kröger, N., et al., Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 1999. 286: p. 1129–1132.
  • Referans113. Ahmad, A., et al., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids. Surf. B: Biointer., 2003. 28: p. 313–318.
  • Referans14. Shahverdi, A.R., et al., Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc. Biochem., 2007. 42: p. 919–923.
  • Referans15. Siddiqi, K.S., et al., Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomaterials Research, 2018. 22: p. 1–9.
  • Referans16. Nath, D., and P., Banerjee, Green nanotechnology–a new hope for medical biology. Envir. Toxi. Pharmac., 2013. 36: p. 997–1014.
  • Referans17. Ovais, M., et al., Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol., 2018. 102: p. 6799–6814.
  • Referans18. Gardea-Torresdey, J.L., et al., Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003. 19: p. 1357–1361.
  • Referans19. Shankar, S.S., et al., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Coll. Inter. Sci., 2004. 275: p. 496–502.
  • Referans20. Chandran, S.P., et al., Synthesis of gold nanotriangles and silver nanoparticles using Aloe wera plant extract. Biotech. Progress., 2006. 22: p. 577–583.
  • Referans21. Vilchis-Nestor, A.R., et al., Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Lettters, 2008. 62: p. 3103–3105.
  • Referans22. Sathishkumar, M., et al., Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Coll. Surfac. B: Biointer., 2009. 73: p. 332–338.
  • Referans23. Bar, H., et al., Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Coll. Surf. A: Physicochem. Eng. Aspects., 2009. 348: p. 212–216.
  • Referans24. Bankar, A., et al., Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Coll. Surf. A: Physicochem. Eng. Aspects., 2010. 368: p. 58–63.
  • Referans25. Krishnaraj, C., et al., Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll. Surf. B: Biointerfaces, 2010. 76: p. 50–56.
  • Referans26. Vidhu, V.K., S.A. Aromal, and D. Philip, Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectroc. Acta Part A: Molec. Biomolecular Spectr., 2011. 83: p. 392–397.
  • Referans27. Raja, K., A. Saravanakumar, and R. Vijayakumar, Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectroc. Acta Part A: Molec. Biomolecular Spectr., 2012. 97: p. 490–494.
  • Referans28. Geetha, A.R., et al., Optimization of green synthesis of silver nanoparticles from leaf extracts of Pimenta dioica (allspice). The Sci. World J., 2013: 5 pages.
  • Referans29. Shetty, P., et al., Synthesis, characterization and antimicrobial activity of Alstonia scholaris bark-extract-mediated silver nanoparticles. J Nanostruct. Chem., 2014. 4: p. 161–170.
  • Referans30. Pourmortazavi, S.M., et al., Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectroc. Acta Part A: Molec. Biomolecular Spectr., 2015. 136: p. 1249–1254.
  • Referans31. Ali, M., et al., Inhibition of Phytophythora parasitica, P. capsici, by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 2015. 105: p. 1183–1190.
  • Referans32. Ravichandran, V., et al., Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 2016. 180: p. 264–267.
  • Referans33. Karthik, R., et al., Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. J. Photochemistry Photobiology B: Bio., 2017. 170: p. 164–172.
  • Referans34. Kumar, B., et al., Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Bio. Sci., 2017. 24: p. 45–50.
  • Referans35. Chahardoli, A., N. Karimi, and A. Fattahi, Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy. Adv. Pow. Techno., 2017. 29: p. 202–210.
  • Referans36. Arya, K., et al., Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artificial Cells, Nanomedicine, Biotech., 2018. 46: p. 985–993.
  • Referans37. Satpathy, S., et al., Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artificial Cells, Nanomedicine Biotech., 2018. 46: p. 71–85.
  • Referans38. Behravan, M., et al., Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Internat. J. Biol. Macromolec., 2019. 124: p. 148–154.
  • Referans39. Maghsoudy, N., et al., Biosynthesis of ag and fe nanoparticles using Erodium cicutarium; study, optimization, and modeling of the antibacterial properties using response surface methodology. J. Nanostruc. Chem., 2019. 9: p. 203–216.
  • Referans40. Ghojavand, S., M. Madani, and J. Karimi, Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of Felty germander. J. Inorganic Organometal. Polymers Mater., 2020. 30: p. 2987–2997.
  • Referans41. Venkatadri, B., et al., Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J. Bio. Sci., 2020. 27: p. 2980–2986.
  • Referans42. Fatimah, I., et al., Ultrasound-assisted biosynthesis of silver and gold nanoparticles using Clitoria ternatea flower. South African Journal of Chemical Engineering, 2020. 34: p. 97–106.
  • Referans43. Bharadwaj, K.K., Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-np). Nanomaterials, 2021. 11: p. 1999.
  • Referans44. Al-Otibi, F., et al., Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi J. Biolo. Sci., 2021. 28: p. 2229–2235.
  • Referans45. Le, N.T.T., et al., The physicochemical and antifungal properties of eco-friendly silver nanoparticles synthesized by Psidium guajava leaf extract in the comparison with Tamarindus indica. J. Cluster Sci., 2021. 32: p. 601–611.
  • Referans46. Kolaylı, S., et al., Chemical and antioxidant properties of Laurocerasus officinalis Roem. (Cherry Laurel) fruit grown in the Black Sea Region. J. Agric. Food Chem., 2003. 51: p. 7489–94.
  • Referans47. Yesilada, E., et al., Traditional medicine in Türkiye IX. Folk Medicine in Noth-West Anatolia. J Ethnopharmacology, 1999. 64: p. 195–210.
  • Referans48. Sahan, Y., Effect of Prunus laurocerasus L. (cherry laurel) leaf extracts on growth of bread spoilage fungi. Bulg. J.Agricultural Sci., 2011. 17: p. 83–92.
  • Referans49. Karabegovic, I.T., et al., The effect of different extraction techniques on the compositionand antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops Products, 2014. 54: p. 142–148.
  • Referans50. Cochran, W.G., and G.M. Cox, Experimental designs, 2nd ed. New York: Wiley, 1992. pp. 335–375.
  • Referans51. Türkkan, M., Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. J. Agricultural Sci. , 2013. 19: p. 178–187.
  • Referans52. Thompson, D.P., Fungitoxic activity of essential oil components on food storage fungi. Mycologia, 1989. 81: p. 151–153.
  • Referans53. Tripathi, P., et al., Evaluation of some essential oils as botanical fungi toxicants in management of post-harvest rotting of citrus fruits. World J. Micro. Biotech., 2004. 20: p. 317–321.
  • Referans54. Vanaja, M., et al., Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J. Nanostruc. Chem., 2013. 3: p. 1–8.
  • Referans55. Veerasamy, R., et al., Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Society., 2011. 15: p. 113–120.
  • Referans56. Reddy, L.V.A., et al., Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresource Technology, 2008. 99: p. 2242–2249.
  • Referans57. Mondal, P., and M.K. Purkait, Green synthesized iron nanoparticle-embedded pH-responsive PVDF-co-HFP membranes: optimization study for NPs preparation and nitrobenzene reduction. Separ. Sci. Techno., 2017. 52: p. 2338–2355.
  • Referans58. Sun, Q., et al., Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochem. Eng. Aspect., 2014. 444: p. 226–231.
  • Referans59. Sanghi, R., and P. Verma, Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology, 2009. 100: p. 501–504.
  • Referans60. Nikaeen, G., et al., Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and ınvestigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 2020. 10: p. 1–16.
  • Referans61. Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996. 12: p. 788–800.
  • Referans62. Njagi, E.C., et al., Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2011. 27: p. 264–271.
  • Referans63. Gurunathan, S., et al., Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Letters, 2015. 10: p. 35.
  • Referans64. Jeeva, K., et al., Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products, 2014. 52: p. 714–720.
  • Referans65. Reddy, N.J., et al., Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Sci. Eng: C, 2014. 34: p. 115–122.
  • Referans66. Magudapathy, P., et al., Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B: Condensed Matter., 2001. 299: p. 142–146.
  • Referans67. Krishnaraj, C., et al., Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectroc. Acta Part A: Molecular and Biomolecular Spectro., 2012. 93: 95–99.
  • Referans68. Buzea, C. I.I. Pacheco, and K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007. 2: p. 17–64.
There are 68 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Uğur Yiğit 0000-0003-1692-397X

Yaren Gürel 0000-0002-9239-4005

Hasan İlhan 0000-0002-4475-1629

Muharrem Türkkan 0000-0001-7779-9365

Project Number B-2209
Publication Date April 15, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

EndNote Yiğit U, Gürel Y, İlhan H, Türkkan M (April 1, 2023) Antifungal activity and optimization procedure of silver nanoparticles green synthesized with Prunus laurocerasus L. (cherry laurel) leaf extract. International Journal of Life Sciences and Biotechnology 6 1 1–20.



Follow us on social networks  19277 19276 20153  22366