Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 282 - 288, 31.12.2023
https://doi.org/10.29132/ijpas.1368045

Öz

Kaynakça

  • Aydin Akgun, F., Bayramov, A. and Bayramoğlu, M. (2013). Discontinuous boundary value problems with retarded argument and eigenparameter-dependent boundary conditions. Mediterranean journal of mathematics, 10(1), 277-288.
  • Bayramoğlu, M., Köklü, K. Ö. and Baykal, O. (2002). On the spectral properties of the regular Sturm-Liouville Problem with the lag argument for which its boundary conditions depends on the spectral parameter. Turkish Journal of Mathematics, 26(4), 421-432.
  • Cetinkaya, F. A. and Mamedov, K. R. (2017). A boundary value problem with retarded argument and discontinuous coefficient in the differential equation. Azerbaijan Journal of Mathematics, 7(1), 135-145.
  • Hira, F. (2017). A trace formula for the Sturm-Liouville type equation with retarded argument. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat, 66(1), 124-132.
  • Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht, The Nederlands: Kluwer Academic Publishers.
  • Koparan, K. (2019). Sınırda parametre içeren geç kalan argümanlı Sturm Liouville probleminin özdeğerlerinin ve özfonksiyonlarının asimtotik özellikleri, Yüksek Lisans Tezi.
  • Norkin, S. B. (1956). Boundary problem for a secondorder differential equation with a retarded argument. Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta, 181, 59-72.
  • Norkin, S. B. (1958). On periodic solutions of a linear homogeneous differential equation of second order with retarded argument. Matematicheskii Sbornik, 87(1), 71-104.
  • Norkin, S. B. (1972). Differential Equations of the Second Order with Retarded Argument, Providence, Rhode Island: American Mathematical Society.
  • Şen, E. and Bayramov, A. (2011). On calculation of eigenvalues and eigenfunctions of a Sturm-Liouville type problem with retarded argument which contains a spectral parameter in the boundary condition. Journal of Inequalities and Applications, 2011(1), 1-9.
  • Şen, E. and Bayramov, A. (2011). Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition. Mathematical and Computer Modelling, 54(11-12), 3090-3097.
  • Şen, E. and Bayramov, A. (2013). Asymptotic formulations of the eigenvalues and eigenfunctions for a boundary value problem. Mathematical Methods in the Applied Sciences, 36(12), 1512-1519.
  • Şen, E., Seo, J. J. and Araci, S. (2013). Asymptotic behaviour of eigenvalues and eigenfunctions of a Sturm-Liouville problem with retarded argument. Journal of Applied Mathematics, 2013.
  • Yang, C. F. (2012). Trace and inverse problem of a discontinuous Sturm–Liouville operator with retarded argument. Journal of Mathematical Analysis and Applications, 395(1), 30-41.

A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition

Yıl 2023, , 282 - 288, 31.12.2023
https://doi.org/10.29132/ijpas.1368045

Öz

In this work, a discontinuous boundary value problem with retarded argument is studied. At the discontinuity point there is a transmission condition that contains a parameter. Asymptotic properties of eigenvalues and corresponding eigenfunctions of the boundary value problem are studied.

Kaynakça

  • Aydin Akgun, F., Bayramov, A. and Bayramoğlu, M. (2013). Discontinuous boundary value problems with retarded argument and eigenparameter-dependent boundary conditions. Mediterranean journal of mathematics, 10(1), 277-288.
  • Bayramoğlu, M., Köklü, K. Ö. and Baykal, O. (2002). On the spectral properties of the regular Sturm-Liouville Problem with the lag argument for which its boundary conditions depends on the spectral parameter. Turkish Journal of Mathematics, 26(4), 421-432.
  • Cetinkaya, F. A. and Mamedov, K. R. (2017). A boundary value problem with retarded argument and discontinuous coefficient in the differential equation. Azerbaijan Journal of Mathematics, 7(1), 135-145.
  • Hira, F. (2017). A trace formula for the Sturm-Liouville type equation with retarded argument. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat, 66(1), 124-132.
  • Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht, The Nederlands: Kluwer Academic Publishers.
  • Koparan, K. (2019). Sınırda parametre içeren geç kalan argümanlı Sturm Liouville probleminin özdeğerlerinin ve özfonksiyonlarının asimtotik özellikleri, Yüksek Lisans Tezi.
  • Norkin, S. B. (1956). Boundary problem for a secondorder differential equation with a retarded argument. Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta, 181, 59-72.
  • Norkin, S. B. (1958). On periodic solutions of a linear homogeneous differential equation of second order with retarded argument. Matematicheskii Sbornik, 87(1), 71-104.
  • Norkin, S. B. (1972). Differential Equations of the Second Order with Retarded Argument, Providence, Rhode Island: American Mathematical Society.
  • Şen, E. and Bayramov, A. (2011). On calculation of eigenvalues and eigenfunctions of a Sturm-Liouville type problem with retarded argument which contains a spectral parameter in the boundary condition. Journal of Inequalities and Applications, 2011(1), 1-9.
  • Şen, E. and Bayramov, A. (2011). Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition. Mathematical and Computer Modelling, 54(11-12), 3090-3097.
  • Şen, E. and Bayramov, A. (2013). Asymptotic formulations of the eigenvalues and eigenfunctions for a boundary value problem. Mathematical Methods in the Applied Sciences, 36(12), 1512-1519.
  • Şen, E., Seo, J. J. and Araci, S. (2013). Asymptotic behaviour of eigenvalues and eigenfunctions of a Sturm-Liouville problem with retarded argument. Journal of Applied Mathematics, 2013.
  • Yang, C. F. (2012). Trace and inverse problem of a discontinuous Sturm–Liouville operator with retarded argument. Journal of Mathematical Analysis and Applications, 395(1), 30-41.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Devreler ve Sistemler
Bölüm Makaleler
Yazarlar

Özge Işık Gülmezler Bu kişi benim 0009-0001-5430-2210

Özgür Mızrak 0000-0001-5961-6019

Erken Görünüm Tarihi 29 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 28 Eylül 2023
Kabul Tarihi 17 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Işık Gülmezler, Ö., & Mızrak, Ö. (2023). A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences, 9(2), 282-288. https://doi.org/10.29132/ijpas.1368045
AMA Işık Gülmezler Ö, Mızrak Ö. A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences. Aralık 2023;9(2):282-288. doi:10.29132/ijpas.1368045
Chicago Işık Gülmezler, Özge, ve Özgür Mızrak. “A Boundary Value Problem With Retarded Argument Containing an Eigenparameter in the Transmission Condition”. International Journal of Pure and Applied Sciences 9, sy. 2 (Aralık 2023): 282-88. https://doi.org/10.29132/ijpas.1368045.
EndNote Işık Gülmezler Ö, Mızrak Ö (01 Aralık 2023) A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences 9 2 282–288.
IEEE Ö. Işık Gülmezler ve Ö. Mızrak, “A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition”, International Journal of Pure and Applied Sciences, c. 9, sy. 2, ss. 282–288, 2023, doi: 10.29132/ijpas.1368045.
ISNAD Işık Gülmezler, Özge - Mızrak, Özgür. “A Boundary Value Problem With Retarded Argument Containing an Eigenparameter in the Transmission Condition”. International Journal of Pure and Applied Sciences 9/2 (Aralık 2023), 282-288. https://doi.org/10.29132/ijpas.1368045.
JAMA Işık Gülmezler Ö, Mızrak Ö. A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences. 2023;9:282–288.
MLA Işık Gülmezler, Özge ve Özgür Mızrak. “A Boundary Value Problem With Retarded Argument Containing an Eigenparameter in the Transmission Condition”. International Journal of Pure and Applied Sciences, c. 9, sy. 2, 2023, ss. 282-8, doi:10.29132/ijpas.1368045.
Vancouver Işık Gülmezler Ö, Mızrak Ö. A Boundary Value Problem with Retarded Argument Containing an Eigenparameter in the Transmission Condition. International Journal of Pure and Applied Sciences. 2023;9(2):282-8.

154501544915448154471544615445