Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor

Yıl 2023, , 411 - 421, 31.12.2023
https://doi.org/10.29132/ijpas.1377054

Öz

In this study, pure and 1%, 2% and %3 In-doped CdS thin films were produced by spray pyrolysis method. CdS is an n-type (II-VI group) semiconductor material and used as a buffer layer in solar cells. By doping In into CdS thin film, it was investigated how optical and crystalline behavior of thin film are changed. Using Moss and Herve&Vandamme and Ravindra relations, refractive indices and dielectric coefficients were investigated depending on the band gap of the obtained CdS sample. It has been observed that In element decreases the band gap of CdS thin film, improved its crystal structure and reduced its roughness. Therefore, 3% In doped CdS has gained a more ideal feature for use as an n-type semiconductor in solar cells. CIGS/In doped CdS solar cell was modelled and analysed by SCAPS-1D simulation program by using the physical parameters of the semiconductor layers that make up solar cells as imputs of program. Photovoltaic parameters of solar cell based on donor defect density, the neutral interface defect density and Auger electron/hole capture coefficient which were calculated by using In %3 doped CdS thin film, which has the most ideal n-type semiconductor properties.

Kaynakça

  • Abderrezek, M. and Djeghlal, M. E. (2019). Contribution to improve the performances of Cu2ZnSnS4 thin-film solar cell via a back surface field layer. Optik, 181, 220-230.
  • Al-Douri, Y., Khasawneh, Q., Kiwan, S., Hashim, U., Abd Hamid, S. B., Reshak, A. H., Bouhemadou, A., Ameri, M. and Khenata, R. (2014). Structural and optical insights to enhance solar cell performance of CdS nanostructures. Energy Conversion and Management, 82, 238-243.
  • AlKhalifah, M. S., El Radaf, I. M. and El-Bana, M. S. (2020). New window layer of Cu2CdSn3S8 for thin film solar cells. Journal of Alloys and Compounds, 813, 152169.
  • Ashour, A. (2003). Physical properties of spray pyrolysed CdS thin films. Turkish Journal of Physics, 27(6), 551-558.
  • Atay, F., Bilgin, V., Akyuz, I. and Kose, S. (2003). The effect of In doping on some physical properties of CdS films. Materials Science in Semiconductor Processing, 6(4), 197-203.
  • Bang, J. H., Han, K., Skrabalak, S. E., Kim, H. and Suslick, K. S. (2007). Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. The Journal of Physical Chemistry C, 111(29), 10959-10964.
  • Baturay, Ş. (2017). Indium doping on the structural, surface and optical properties of CdS thin films prepared by ultrasonic spray pyrolysis method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 264-274.
  • Baykul, M. C. and Balcioglu, A. (2000). AFM and SEM studies of CdS thin films produced by an ultrasonic spray pyrolysis method. Microelectronic Engineering, 51, 703-713.
  • Burgelman, M., Decock, K., Niemegeers, A., Verschraegen, J. and Degrave, S. (2016). SCAPS manual. University of Ghent: Ghent, Belgium.
  • Candan, I., Gezgin, S. Y., Baturay, S. and Kılıç, H.S. (2023). Production of Cu2SnS3 thin films depending on the sulphur flow rate and annealing temperature time. Journal Of Optoelectronıcs and Advanced Materıals, 25(3-4), 191-202.
  • Candan, I., Gezgin, S. Y., Baturay, S. and Kilic, H. S. (2022). Structural, Morphological, Optical Properties and Modelling of Ag Doped CuO/ZnO/AZO Solar Cell. Journal of Coating Science and Technology, 9, 26-37.
  • Gansukh, M., Li, Z., Rodriguez, M. E., Engberg, S., Martinho, F. M. A., Mariño, S. L., Stamate, E., Schou, J., Hansen, O. and Canulescu, S. (2020). Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTS. Scientific Reports, 10(1), 18388.
  • Gao, H., Wang, F., Wang, S., Wang, X., Yi, Z. and Yang, H. (2019). Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin, 115, 140-149.
  • Gezgin, S. Y. (2022). Modelling and investigation of the electrical properties of CIGS/n-Si heterojunction solar cells. Optical Materials, 131, 112738.
  • Gezgin, S. Y. and Kiliç, H. Ş. (2022). The Effect of Ag and Au Contacts on the Efficiency of CZTS/n-Si Solar Cell: The Confirmation of Experimental and Theoretical Results by SCAPS Simulation. Brazilian Journal of Physics, 52(4), 148.
  • Ghorbani, E. (2020). On efficiency of earth-abundant chalcogenide photovoltaic materials buffered with CdS: the limiting effect of band alignment. Journal of Physics: Energy, 2(2), 025002.
  • Hausser, S., Fuchs, G., Hangleiter, A., Streubel, K. andTsang, W. T. (1990). Auger recombination in bulk and quantum well InGaAs. Applied physics letters, 56(10), 913-915.
  • Kaur, I., Pandya, D. K. and Chopra, K. L. (1980). Growth kinetics and polymorphism of chemically deposited CdS films. Journal of the Electrochemical Society, 127(4), 943.
  • Mustafa, F. A. (2013). Optical properties of NaI doped polyvinyl alcohol films. Physical Sciences Research International, 1(1), 1-9.
  • Niane, D., Diagne, O., Ehemba, A. K., Soce, M. M. and Dieng, M. (2018). Generation and Recombination of a CIGSe Solar Cell under the Influence of the Thickness of a Potassium Fluoride (KF) Layer. American Journal of Materials Science and Engineering, 6(2), 26-30.
  • Patidar, D., Sharma, R., Jain, N., Sharma, T. P. and Saxena, N. S. (2006). Optical properties of CdS sintered film. Bulletin of Materials Science, 29, 21-24.
  • Perna, G., Capozzi, V., Ambrico, M., Augelli, V., Ligonzo, T., Minafra, A., Schiavulli, L. and Pallara, M. (2004). Structural and optical characterization of undoped and indium-doped CdS films grown by pulsed laser deposition. Thin Solid Films, 453, 187-194.
  • Petrus, R. Y., Ilchuk, H. A., Kashuba, A. I., Semkiv, I. V., Zmiiovska, E. O. and Honchar, F. M. (2020). Optical properties of CdS thin films. Journal of Applied Spectroscopy, 87, 35-40.
  • Pindolia, G., Shinde, S. M. and Jha, P. K. (2022). Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy, 236, 802-821.
  • Ravindra, N. M., Ganapathy, P. and Choi, J. (2007). Energy gap–refractive index relations in semiconductors–An overview. Infrared physics & technology, 50(1), 21-29.
  • Rittner, E. S. and Schulman, J. H. (1943). Studies on the Coprecipitation of Cadmium and Mercuric Sulfides. The Journal of Physical Chemistry, 47(8), 537-543.
  • Sahay, P. P., Nath, R. K. and Tewari, S. (2007). Optical properties of thermally evaporated CdS thin films. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 42(3), 275-280.
  • Sankapal, B. R., Mane, R. S. and Lokhande, C. D. (2000). Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method. Materials research bulletin, 35(2), 177-184.
  • Seon, J.-B., Lee, S., Kim, J. M. and Jeong, H.-D. (2009). Spin-coated CdS thin films for n-channel thin film transistors. Chemistry of Materials, 21(4), 604-611.
  • Srivastava, A., Dua, P., Lenka, T. R. and Tripathy, S. K. (2021). Numerical simulations on CZTS/CZTSe based solar cell with ZnSe as an alternative buffer layer using SCAPS-1D. Materials Today: Proceedings, 43, 3735-3739.
  • Strauss, U., Rühle, W. W. and Köhler, K. (1993). Auger recombination in intrinsic GaAs. Applied Physics Letters, 62(1), 55-57.
  • Su, B. and Choy, K. L. (2000). Microstructure and properties of the CdS thin films prepared by electrostatic spray assisted vapour deposition (ESAVD) method. Thin Solid Films, 359(2), 160-164.
  • Tripathi, S., Lohia, P. and Dwivedi, D. K. (2020). Contribution to sustainable and environmentally friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer. Solar Energy, 204, 748-760.
  • Xu, J., Quan, S., Zou, Z., Guo, P., Lu, Y., Yan, H. and Luo, Y. (2016). Color-tunable photoluminescence from In-doped CdS nanowires. Chemical Physics Letters, 652, 216-219.
  • Yoon, S. H., Lee, S. S., Seo, K. W. and Shim, I. (2006). Preparation of CdS thin films through MOCVD method, using Cd-S single-source precursors. Bulletin-Korean Chemical Society, 27(12), 2071.
  • Zelaya, A.O., Alvarado‐Gil, J. J., Lozada‐Morales, R., Vargas, H. and Ferreira da Silva, A. (1994). Band‐gap shift in CdS semiconductor by photoacoustic spectroscopy: Evidence of a cubic to hexagonal lattice transition. Applied Physics Letters, 64(3), 291-293.
  • Ziabari, A.A. and Ghodsi, F. E. (2012). Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment. Solar energy materials and solar cells, 105, 249-262.
Yıl 2023, , 411 - 421, 31.12.2023
https://doi.org/10.29132/ijpas.1377054

Öz

Kaynakça

  • Abderrezek, M. and Djeghlal, M. E. (2019). Contribution to improve the performances of Cu2ZnSnS4 thin-film solar cell via a back surface field layer. Optik, 181, 220-230.
  • Al-Douri, Y., Khasawneh, Q., Kiwan, S., Hashim, U., Abd Hamid, S. B., Reshak, A. H., Bouhemadou, A., Ameri, M. and Khenata, R. (2014). Structural and optical insights to enhance solar cell performance of CdS nanostructures. Energy Conversion and Management, 82, 238-243.
  • AlKhalifah, M. S., El Radaf, I. M. and El-Bana, M. S. (2020). New window layer of Cu2CdSn3S8 for thin film solar cells. Journal of Alloys and Compounds, 813, 152169.
  • Ashour, A. (2003). Physical properties of spray pyrolysed CdS thin films. Turkish Journal of Physics, 27(6), 551-558.
  • Atay, F., Bilgin, V., Akyuz, I. and Kose, S. (2003). The effect of In doping on some physical properties of CdS films. Materials Science in Semiconductor Processing, 6(4), 197-203.
  • Bang, J. H., Han, K., Skrabalak, S. E., Kim, H. and Suslick, K. S. (2007). Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. The Journal of Physical Chemistry C, 111(29), 10959-10964.
  • Baturay, Ş. (2017). Indium doping on the structural, surface and optical properties of CdS thin films prepared by ultrasonic spray pyrolysis method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 264-274.
  • Baykul, M. C. and Balcioglu, A. (2000). AFM and SEM studies of CdS thin films produced by an ultrasonic spray pyrolysis method. Microelectronic Engineering, 51, 703-713.
  • Burgelman, M., Decock, K., Niemegeers, A., Verschraegen, J. and Degrave, S. (2016). SCAPS manual. University of Ghent: Ghent, Belgium.
  • Candan, I., Gezgin, S. Y., Baturay, S. and Kılıç, H.S. (2023). Production of Cu2SnS3 thin films depending on the sulphur flow rate and annealing temperature time. Journal Of Optoelectronıcs and Advanced Materıals, 25(3-4), 191-202.
  • Candan, I., Gezgin, S. Y., Baturay, S. and Kilic, H. S. (2022). Structural, Morphological, Optical Properties and Modelling of Ag Doped CuO/ZnO/AZO Solar Cell. Journal of Coating Science and Technology, 9, 26-37.
  • Gansukh, M., Li, Z., Rodriguez, M. E., Engberg, S., Martinho, F. M. A., Mariño, S. L., Stamate, E., Schou, J., Hansen, O. and Canulescu, S. (2020). Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTS. Scientific Reports, 10(1), 18388.
  • Gao, H., Wang, F., Wang, S., Wang, X., Yi, Z. and Yang, H. (2019). Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin, 115, 140-149.
  • Gezgin, S. Y. (2022). Modelling and investigation of the electrical properties of CIGS/n-Si heterojunction solar cells. Optical Materials, 131, 112738.
  • Gezgin, S. Y. and Kiliç, H. Ş. (2022). The Effect of Ag and Au Contacts on the Efficiency of CZTS/n-Si Solar Cell: The Confirmation of Experimental and Theoretical Results by SCAPS Simulation. Brazilian Journal of Physics, 52(4), 148.
  • Ghorbani, E. (2020). On efficiency of earth-abundant chalcogenide photovoltaic materials buffered with CdS: the limiting effect of band alignment. Journal of Physics: Energy, 2(2), 025002.
  • Hausser, S., Fuchs, G., Hangleiter, A., Streubel, K. andTsang, W. T. (1990). Auger recombination in bulk and quantum well InGaAs. Applied physics letters, 56(10), 913-915.
  • Kaur, I., Pandya, D. K. and Chopra, K. L. (1980). Growth kinetics and polymorphism of chemically deposited CdS films. Journal of the Electrochemical Society, 127(4), 943.
  • Mustafa, F. A. (2013). Optical properties of NaI doped polyvinyl alcohol films. Physical Sciences Research International, 1(1), 1-9.
  • Niane, D., Diagne, O., Ehemba, A. K., Soce, M. M. and Dieng, M. (2018). Generation and Recombination of a CIGSe Solar Cell under the Influence of the Thickness of a Potassium Fluoride (KF) Layer. American Journal of Materials Science and Engineering, 6(2), 26-30.
  • Patidar, D., Sharma, R., Jain, N., Sharma, T. P. and Saxena, N. S. (2006). Optical properties of CdS sintered film. Bulletin of Materials Science, 29, 21-24.
  • Perna, G., Capozzi, V., Ambrico, M., Augelli, V., Ligonzo, T., Minafra, A., Schiavulli, L. and Pallara, M. (2004). Structural and optical characterization of undoped and indium-doped CdS films grown by pulsed laser deposition. Thin Solid Films, 453, 187-194.
  • Petrus, R. Y., Ilchuk, H. A., Kashuba, A. I., Semkiv, I. V., Zmiiovska, E. O. and Honchar, F. M. (2020). Optical properties of CdS thin films. Journal of Applied Spectroscopy, 87, 35-40.
  • Pindolia, G., Shinde, S. M. and Jha, P. K. (2022). Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy, 236, 802-821.
  • Ravindra, N. M., Ganapathy, P. and Choi, J. (2007). Energy gap–refractive index relations in semiconductors–An overview. Infrared physics & technology, 50(1), 21-29.
  • Rittner, E. S. and Schulman, J. H. (1943). Studies on the Coprecipitation of Cadmium and Mercuric Sulfides. The Journal of Physical Chemistry, 47(8), 537-543.
  • Sahay, P. P., Nath, R. K. and Tewari, S. (2007). Optical properties of thermally evaporated CdS thin films. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 42(3), 275-280.
  • Sankapal, B. R., Mane, R. S. and Lokhande, C. D. (2000). Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method. Materials research bulletin, 35(2), 177-184.
  • Seon, J.-B., Lee, S., Kim, J. M. and Jeong, H.-D. (2009). Spin-coated CdS thin films for n-channel thin film transistors. Chemistry of Materials, 21(4), 604-611.
  • Srivastava, A., Dua, P., Lenka, T. R. and Tripathy, S. K. (2021). Numerical simulations on CZTS/CZTSe based solar cell with ZnSe as an alternative buffer layer using SCAPS-1D. Materials Today: Proceedings, 43, 3735-3739.
  • Strauss, U., Rühle, W. W. and Köhler, K. (1993). Auger recombination in intrinsic GaAs. Applied Physics Letters, 62(1), 55-57.
  • Su, B. and Choy, K. L. (2000). Microstructure and properties of the CdS thin films prepared by electrostatic spray assisted vapour deposition (ESAVD) method. Thin Solid Films, 359(2), 160-164.
  • Tripathi, S., Lohia, P. and Dwivedi, D. K. (2020). Contribution to sustainable and environmentally friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer. Solar Energy, 204, 748-760.
  • Xu, J., Quan, S., Zou, Z., Guo, P., Lu, Y., Yan, H. and Luo, Y. (2016). Color-tunable photoluminescence from In-doped CdS nanowires. Chemical Physics Letters, 652, 216-219.
  • Yoon, S. H., Lee, S. S., Seo, K. W. and Shim, I. (2006). Preparation of CdS thin films through MOCVD method, using Cd-S single-source precursors. Bulletin-Korean Chemical Society, 27(12), 2071.
  • Zelaya, A.O., Alvarado‐Gil, J. J., Lozada‐Morales, R., Vargas, H. and Ferreira da Silva, A. (1994). Band‐gap shift in CdS semiconductor by photoacoustic spectroscopy: Evidence of a cubic to hexagonal lattice transition. Applied Physics Letters, 64(3), 291-293.
  • Ziabari, A.A. and Ghodsi, F. E. (2012). Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment. Solar energy materials and solar cells, 105, 249-262.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Serap Yiğit Gezgin 0000-0003-3046-6138

Şilan Baturay 0000-0002-8122-6671

Hamdi Şükür Kılıç 0000-0002-7546-4243

Erken Görünüm Tarihi 29 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 16 Ekim 2023
Kabul Tarihi 29 Kasım 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yiğit Gezgin, S., Baturay, Ş., & Kılıç, H. Ş. (2023). Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor. International Journal of Pure and Applied Sciences, 9(2), 411-421. https://doi.org/10.29132/ijpas.1377054
AMA Yiğit Gezgin S, Baturay Ş, Kılıç HŞ. Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor. International Journal of Pure and Applied Sciences. Aralık 2023;9(2):411-421. doi:10.29132/ijpas.1377054
Chicago Yiğit Gezgin, Serap, Şilan Baturay, ve Hamdi Şükür Kılıç. “Numerical Analysis of the Thin Film Solar Cell Modelled Based on In Doped CdS Semiconductor”. International Journal of Pure and Applied Sciences 9, sy. 2 (Aralık 2023): 411-21. https://doi.org/10.29132/ijpas.1377054.
EndNote Yiğit Gezgin S, Baturay Ş, Kılıç HŞ (01 Aralık 2023) Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor. International Journal of Pure and Applied Sciences 9 2 411–421.
IEEE S. Yiğit Gezgin, Ş. Baturay, ve H. Ş. Kılıç, “Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor”, International Journal of Pure and Applied Sciences, c. 9, sy. 2, ss. 411–421, 2023, doi: 10.29132/ijpas.1377054.
ISNAD Yiğit Gezgin, Serap vd. “Numerical Analysis of the Thin Film Solar Cell Modelled Based on In Doped CdS Semiconductor”. International Journal of Pure and Applied Sciences 9/2 (Aralık 2023), 411-421. https://doi.org/10.29132/ijpas.1377054.
JAMA Yiğit Gezgin S, Baturay Ş, Kılıç HŞ. Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor. International Journal of Pure and Applied Sciences. 2023;9:411–421.
MLA Yiğit Gezgin, Serap vd. “Numerical Analysis of the Thin Film Solar Cell Modelled Based on In Doped CdS Semiconductor”. International Journal of Pure and Applied Sciences, c. 9, sy. 2, 2023, ss. 411-2, doi:10.29132/ijpas.1377054.
Vancouver Yiğit Gezgin S, Baturay Ş, Kılıç HŞ. Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor. International Journal of Pure and Applied Sciences. 2023;9(2):411-2.

154501544915448154471544615445