Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural and Optical Properties of ZnO-doped PCL+PVC-N3 Polymers

Yıl 2024, , 174 - 189, 30.06.2024
https://doi.org/10.29132/ijpas.1454669

Öz

In this study, poly (-caprolactone) (PCL) and poly(vinyl chloride) (PVC-N3) blends were produced and the composite formed by the addition of ZnO semiconductor was investigated. First of all, PCL and PVC-N3 were obtained by mixing in a suitable solu-tion with the help of a homogenizer for a long time. ZnO, which was mixed with the same solvent in a separate place, was added to the prepared blend and the changes in the polymer blend were examined according to the changing ZnO ratio. 5%, 10%, 15% ZnO semiconductor was added. The structural results of the prepared samples were analyzed by XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy) analysis. The optical properties of ZnO doped composites were characterized by UV-VIS spectrometry. XRD spectra of the samples showed the presence of ZnO with hexagonal wurtzite structure. SEM analysis showed increased clustering in the struc-ture, indicating that the polymer blend changes the surface roughness with doping. In addition, the interaction of PCL+PVC-N3 blend with ZnO was also investigated using UV-Vis spectroscopy. Using UV-Vis measurements, the changes in the forbidden en-ergy ranges of the samples were determined to show improvements for various appli-cations. The optical energy band gaps of ZnO-PCL+PVC-N3 composites were found to change with increasing doping content.

Kaynakça

  • Malimabe, M., et al., Influence of ZnO: Ce3+/Eu3+ doped and co-doped nanopowders on the properties of poly (ε-caprolactone) nanocomposites. Journal of Luminescence, 2022. 251: p. 119134.
  • Haider, T.P., et al., Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 2019. 58(1): p. 50-62.
  • Forster, P.L., et al., Highly luminescent polycaprolactone films doped with diaquatris (thenoyltrifluoroacetonate) europium (III) complex. Journal of Luminescence, 2015. 167: p. 85-90.
  • Çetinkaya, S., et al., Characterization of Al/n-ZnO/p-Si/Al structure with low-cost solution-grown ZnO layer. Philosophical magazine letters, 2013. 93(9): p. 550-559.
  • Ramírez-Agudelo, R., et al., Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Materials Science and Engineering: C, 2018. 83: p. 25-34.
  • Akbaş, A., M.E. Taygun, and S. Küçükbayrak, Fabrication and characterization of PCL/ZnO-NP nanocomposite for wound dressing applications. Eurasian Journal of Biological and Chemical Sciences, 2018. 1(2): p. 54-58.
  • Barbanti, S.H., C.A.C. Zavaglia, and E.A.d.R. Duek, Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds. Materials Research, 2008. 11: p. 75-80.
  • Ebersole, G.C., et al., Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surgical endoscopy, 2012. 26: p. 2717-2728.
  • Zhang, Y. and R.-x. Zhuo, Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials, 2005. 26(33): p. 6736-6742.
  • Jia, W.J., et al., Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 2008. 15(7): p. 409-416.
  • Abdelrazek, E., et al., Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of basic and applied sciences, 2016. 3(1): p. 10-15.
  • Ananchenko, D., et al. Luminescence of sapphire single crystals irradiated with high-power ion beams. in Journal of Physics: Conference Series. 2018. IOP Publishing.
  • Mallakpour, S. and N. Nouruzi, Evaluation of Zno-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites. Polymer-Plastics Technology and Engineering, 2018. 57(1): p. 46-58.
  • Campos, A.d. and S.M.M. Franchetti, Biotreatment effects in films and blends of PVC/PCL previously treated with heat. Brazilian Archives of Biology and Technology, 2005. 48: p. 235-243.
  • Nathan, A.A., A. Onoja, and A. Amah, Influence of PVA, PVP on crystal and optical properties of europium doped strontium aluminate nanoparticles. Amer. J. Eng. Res, 2015. 4(4).
  • Yousif, E., et al., Enhancement of the photo-chemical properties and efficacy of the mixing technique in the preparation of Schiff base-Cu (II)/poly (vinyl chloride) compounds. Emergent Materials, 2019. 2: p. 505-512.
  • Wang, X., et al., Crystalline morphology of electrospun poly (ε-caprolactone)(PCL) nanofibers. Industrial & Engineering Chemistry Research, 2013. 52(13): p. 4939-4949.
  • Mochane, M.J., et al., Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Applied Sciences, 2019. 9(11): p. 2205.
  • Pitt, C.G., T.A. Marks, and A. Schindler, Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. 1980: Academic Press: New York.
  • Xu, Q., et al., Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide. Journal of Applied Polymer Science, 2004. 94(2): p. 593-597.
  • Abdelghany, A., M. Meikhail, and N. Asker, Synthesis and structural-biological correlation of PVC\PVAc polymer blends. Journal of Materials Research and Technology, 2019. 8(5): p. 3908-3916.
  • Liu, W., et al., Design and structural study of a triple-shape memory PCL/PVC blend. Polymer, 2016. 104: p. 115-122.
  • Haruna, H., et al., Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, 2020. 139: p. 3887-3895.
  • Mareau, V.H. and R.E. Prud'Homme, Growth rates and morphologies of miscible PCL/PVC blend thin and thick films. Macromolecules, 2003. 36(3): p. 675-684.
  • Kia, H.G., et al., Shape memory polymer containing composite materials. 2016, Google Patents.
  • Thornton, J., Environmental impacts of polyvinyl chloride (PVC) building materials. Washington, DC: Healthy Building Network, 2002.
  • Nikam, P.N. and V.D. Deshpande, Dielectric behavior of plasticized PVC/alumina nanocomposites influenced with DC biasing field. Materials Today: Proceedings, 2018. 5(1): p. 2254-2262.
  • Miliute-Plepiene, J., A. Fråne, and A.M. Almasi, Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Cleaner Engineering and Technology, 2021. 4: p. 100246.
  • Habashy, M.M., et al., Performance of PVC/SiO 2 nanocomposites under thermal ageing. Applied Nanoscience, 2021. 11: p. 2143-2151.
  • Moulay, S., Chemical modification of poly (vinyl chloride)—Still on the run. Progress in Polymer Science, 2010. 35(3): p. 303-331.
  • Braun, D., Poly (vinyl chloride) on the way from the 19th century to the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(3): p. 578-586.
  • Ouerghui, A., et al., Chemical modifications of poly (vinyl chloride) to poly (vinyl azide) and “clicked” triazole bearing groups for application in metal cation extraction. Reactive and Functional Polymers, 2016. 100: p. 191-197.
  • Zhang, T., et al., Polymer composites based on polyvinyl chloride nanofibers and polypropylene films for terahertz photonics. Optical Materials Express, 2020. 10(10): p. 2456-2469.
  • Ranjan, N., et al., On polyvinyl chloride-polypropylene composite matrix for 4D applications: Flowability, mechanical, thermal and morphological characterizations. Journal of Thermoplastic Composite Materials, 2023. 36(4): p. 1401-1421.
  • Al-Muntaser, A., et al., Fabrication and characterizations of nanocomposite flexible films of ZnO and polyvinyl chloride/poly (N-vinyl carbazole) polymers for dielectric capacitors. Arabian Journal of Chemistry, 2023. 16(10): p. 105171.
  • Pingping, Z., Y. Haiyang, and W. Shiqiang, Viscosity behavior of poly-ϵ-caprolactone (PCL)/poly (vinyl chloride)(PVC) blends in various solvents. European polymer journal, 1998. 34(1): p. 91-94.
  • Nilgün, A., Synthesis and Characterization of Poly vinyl chloride–graft–ethylene glycol Graft Copolymers by “Click” Chemistry. Hacettepe Journal of Biology and Chemistry, 2017. 45(1): p. 35-42.
  • Pekdemir, M.E., et al., Investigation of structure, mechanical, and shape memory behavior of thermally activated poly (ε-caprolactone): azide-functionalized poly (vinyl chloride) binary polymer blend films. The European Physical Journal Plus, 2021. 136: p. 1-14.
  • Zhang, Y., et al., Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012: 1–22. 2012.
  • Joshi, A.S., et al., Influence of GO and rGO on the structural and optical properties of ZnO photoelectrodes for energy harvesting applications. Materials Science and Engineering: B, 2024. 299: p. 116938.
  • Kumar, V., et al., Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. Acs Photonics, 2017. 4(11): p. 2613-2637.
  • Aydın, H., F. Yakuphanoglu, and C. Aydın, Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties. Journal of Alloys and Compounds, 2019. 773: p. 802-811.
  • Shoeb, M., et al., Investigating the size-dependent structural, optical, dielectric, and photocatalytic properties of benign-synthesized ZnO nanoparticles. Journal of Physics and Chemistry of Solids, 2024. 184: p. 111707.
  • Narayanan, N. and N. Deepak, Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity. Solid State Sciences, 2018. 78: p. 144-155.
  • Jayswal, S. and R.S. Moirangthem. Thermal decomposition route to synthesize ZnO nanoparticles for photocatalytic application. in AIP Conference Proceedings. 2018. AIP Publishing.
  • Meng, B., et al., Transparent and ductile poly (lactic acid)/poly (butyl acrylate)(PBA) blends: structure and properties. European Polymer Journal, 2012. 48(1): p. 127-135.
  • Karnan, C., et al., Supramolecular assembly of morpholin-4-ium hydroxy (diphenyl) acetate—structural, spectral and nonlinear optical analyses. Journal of Molecular Structure, 2022. 1250: p. 131719.
  • Bhavani, K., et al., Growth, spectral, optical, and third harmonic generation studies of p-Hydroxyacetanilide (PHA) crystals. Optical Materials, 2024. 148: p. 114924.
  • Asif, M., et al., High energy ion irradiation effect on electrical and optical properties of polymers. Radiation Physics and Chemistry, 2022. 192: p. 109931.
  • Chapi, S. and H. Devendrappa, Influence of cobalt (II) chloride catalysed on the thermal and optical characterization of PEO based solid polymer electrolytes. Journal of Research Updates in Polymer Science, 2014. 3(4): p. 205.

ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri

Yıl 2024, , 174 - 189, 30.06.2024
https://doi.org/10.29132/ijpas.1454669

Öz

Bu çalışmada poly (-caprolactone) (PCL) ile Poli(vinil klorür) (PVC-N3) blendleri üretilmiş olup, ZnO yarıiletken ilavesi ile oluşan kompozit araştırılmıştır. Öncelikle PCL ve PVC-N3 uygun bir çözelti içerisinde homojenizatör yardımıyla uzun süre ka-rıştırılarak elde edilmiştir. Ayrı bir yerde aynı çözücü ile karıştırılan ZnO hazırlanan blende eklenerek, değişen ZnO oranına göre polimer karışımında meydana gelen fark-lılıklar incelenmiştir. %5, %10, %15 oranlarında ZnO yarıiletkeni eklenmiştir. Hazır-lanan numunelerin yapısal sonuçları XRD ve SEM analizleri ile incelenmiştir. ZnO katkılı kompozitlerinin optik özellikleri UV-VIS spektrometresi ile karakterize edil-miştir. Numunelerin XRD (X-ışını Difraksiyonu) spektrumlarında hekzagonal wurtzite yapılı ZnO’in varlığını göstermiştir. SEM (Taramalı Elektron Mikroskopu) analizle-rinde ise yapıda kümelenmenin artması görülmüş olup; polimer blendinin katkıyla yüzey pürüzlülüğünü değiştirdiğini göstermektedir. Buna ilaveten; PCL+PVC-N3 karı-şımının ZnO ile optiksel etkileşimi UV-Vis spektroskopisi kullanılarak incelenmiştir. UV-Vis ölçümleri kullanılarak numunelerdeki yasak enerji aralıklarındaki değişmeler çeşitli uygulamalar için iyileştirme gösterecek şekilde belirlenmiştir. ZnO-PCL+PVC-N3 kompositlerinin optik enerji bant aralıkları artan katkı içeriğiyle değişiklik gösterdiği görülmüştür.

Kaynakça

  • Malimabe, M., et al., Influence of ZnO: Ce3+/Eu3+ doped and co-doped nanopowders on the properties of poly (ε-caprolactone) nanocomposites. Journal of Luminescence, 2022. 251: p. 119134.
  • Haider, T.P., et al., Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 2019. 58(1): p. 50-62.
  • Forster, P.L., et al., Highly luminescent polycaprolactone films doped with diaquatris (thenoyltrifluoroacetonate) europium (III) complex. Journal of Luminescence, 2015. 167: p. 85-90.
  • Çetinkaya, S., et al., Characterization of Al/n-ZnO/p-Si/Al structure with low-cost solution-grown ZnO layer. Philosophical magazine letters, 2013. 93(9): p. 550-559.
  • Ramírez-Agudelo, R., et al., Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Materials Science and Engineering: C, 2018. 83: p. 25-34.
  • Akbaş, A., M.E. Taygun, and S. Küçükbayrak, Fabrication and characterization of PCL/ZnO-NP nanocomposite for wound dressing applications. Eurasian Journal of Biological and Chemical Sciences, 2018. 1(2): p. 54-58.
  • Barbanti, S.H., C.A.C. Zavaglia, and E.A.d.R. Duek, Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds. Materials Research, 2008. 11: p. 75-80.
  • Ebersole, G.C., et al., Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surgical endoscopy, 2012. 26: p. 2717-2728.
  • Zhang, Y. and R.-x. Zhuo, Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials, 2005. 26(33): p. 6736-6742.
  • Jia, W.J., et al., Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 2008. 15(7): p. 409-416.
  • Abdelrazek, E., et al., Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of basic and applied sciences, 2016. 3(1): p. 10-15.
  • Ananchenko, D., et al. Luminescence of sapphire single crystals irradiated with high-power ion beams. in Journal of Physics: Conference Series. 2018. IOP Publishing.
  • Mallakpour, S. and N. Nouruzi, Evaluation of Zno-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites. Polymer-Plastics Technology and Engineering, 2018. 57(1): p. 46-58.
  • Campos, A.d. and S.M.M. Franchetti, Biotreatment effects in films and blends of PVC/PCL previously treated with heat. Brazilian Archives of Biology and Technology, 2005. 48: p. 235-243.
  • Nathan, A.A., A. Onoja, and A. Amah, Influence of PVA, PVP on crystal and optical properties of europium doped strontium aluminate nanoparticles. Amer. J. Eng. Res, 2015. 4(4).
  • Yousif, E., et al., Enhancement of the photo-chemical properties and efficacy of the mixing technique in the preparation of Schiff base-Cu (II)/poly (vinyl chloride) compounds. Emergent Materials, 2019. 2: p. 505-512.
  • Wang, X., et al., Crystalline morphology of electrospun poly (ε-caprolactone)(PCL) nanofibers. Industrial & Engineering Chemistry Research, 2013. 52(13): p. 4939-4949.
  • Mochane, M.J., et al., Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Applied Sciences, 2019. 9(11): p. 2205.
  • Pitt, C.G., T.A. Marks, and A. Schindler, Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. 1980: Academic Press: New York.
  • Xu, Q., et al., Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide. Journal of Applied Polymer Science, 2004. 94(2): p. 593-597.
  • Abdelghany, A., M. Meikhail, and N. Asker, Synthesis and structural-biological correlation of PVC\PVAc polymer blends. Journal of Materials Research and Technology, 2019. 8(5): p. 3908-3916.
  • Liu, W., et al., Design and structural study of a triple-shape memory PCL/PVC blend. Polymer, 2016. 104: p. 115-122.
  • Haruna, H., et al., Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, 2020. 139: p. 3887-3895.
  • Mareau, V.H. and R.E. Prud'Homme, Growth rates and morphologies of miscible PCL/PVC blend thin and thick films. Macromolecules, 2003. 36(3): p. 675-684.
  • Kia, H.G., et al., Shape memory polymer containing composite materials. 2016, Google Patents.
  • Thornton, J., Environmental impacts of polyvinyl chloride (PVC) building materials. Washington, DC: Healthy Building Network, 2002.
  • Nikam, P.N. and V.D. Deshpande, Dielectric behavior of plasticized PVC/alumina nanocomposites influenced with DC biasing field. Materials Today: Proceedings, 2018. 5(1): p. 2254-2262.
  • Miliute-Plepiene, J., A. Fråne, and A.M. Almasi, Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Cleaner Engineering and Technology, 2021. 4: p. 100246.
  • Habashy, M.M., et al., Performance of PVC/SiO 2 nanocomposites under thermal ageing. Applied Nanoscience, 2021. 11: p. 2143-2151.
  • Moulay, S., Chemical modification of poly (vinyl chloride)—Still on the run. Progress in Polymer Science, 2010. 35(3): p. 303-331.
  • Braun, D., Poly (vinyl chloride) on the way from the 19th century to the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(3): p. 578-586.
  • Ouerghui, A., et al., Chemical modifications of poly (vinyl chloride) to poly (vinyl azide) and “clicked” triazole bearing groups for application in metal cation extraction. Reactive and Functional Polymers, 2016. 100: p. 191-197.
  • Zhang, T., et al., Polymer composites based on polyvinyl chloride nanofibers and polypropylene films for terahertz photonics. Optical Materials Express, 2020. 10(10): p. 2456-2469.
  • Ranjan, N., et al., On polyvinyl chloride-polypropylene composite matrix for 4D applications: Flowability, mechanical, thermal and morphological characterizations. Journal of Thermoplastic Composite Materials, 2023. 36(4): p. 1401-1421.
  • Al-Muntaser, A., et al., Fabrication and characterizations of nanocomposite flexible films of ZnO and polyvinyl chloride/poly (N-vinyl carbazole) polymers for dielectric capacitors. Arabian Journal of Chemistry, 2023. 16(10): p. 105171.
  • Pingping, Z., Y. Haiyang, and W. Shiqiang, Viscosity behavior of poly-ϵ-caprolactone (PCL)/poly (vinyl chloride)(PVC) blends in various solvents. European polymer journal, 1998. 34(1): p. 91-94.
  • Nilgün, A., Synthesis and Characterization of Poly vinyl chloride–graft–ethylene glycol Graft Copolymers by “Click” Chemistry. Hacettepe Journal of Biology and Chemistry, 2017. 45(1): p. 35-42.
  • Pekdemir, M.E., et al., Investigation of structure, mechanical, and shape memory behavior of thermally activated poly (ε-caprolactone): azide-functionalized poly (vinyl chloride) binary polymer blend films. The European Physical Journal Plus, 2021. 136: p. 1-14.
  • Zhang, Y., et al., Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012: 1–22. 2012.
  • Joshi, A.S., et al., Influence of GO and rGO on the structural and optical properties of ZnO photoelectrodes for energy harvesting applications. Materials Science and Engineering: B, 2024. 299: p. 116938.
  • Kumar, V., et al., Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. Acs Photonics, 2017. 4(11): p. 2613-2637.
  • Aydın, H., F. Yakuphanoglu, and C. Aydın, Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties. Journal of Alloys and Compounds, 2019. 773: p. 802-811.
  • Shoeb, M., et al., Investigating the size-dependent structural, optical, dielectric, and photocatalytic properties of benign-synthesized ZnO nanoparticles. Journal of Physics and Chemistry of Solids, 2024. 184: p. 111707.
  • Narayanan, N. and N. Deepak, Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity. Solid State Sciences, 2018. 78: p. 144-155.
  • Jayswal, S. and R.S. Moirangthem. Thermal decomposition route to synthesize ZnO nanoparticles for photocatalytic application. in AIP Conference Proceedings. 2018. AIP Publishing.
  • Meng, B., et al., Transparent and ductile poly (lactic acid)/poly (butyl acrylate)(PBA) blends: structure and properties. European Polymer Journal, 2012. 48(1): p. 127-135.
  • Karnan, C., et al., Supramolecular assembly of morpholin-4-ium hydroxy (diphenyl) acetate—structural, spectral and nonlinear optical analyses. Journal of Molecular Structure, 2022. 1250: p. 131719.
  • Bhavani, K., et al., Growth, spectral, optical, and third harmonic generation studies of p-Hydroxyacetanilide (PHA) crystals. Optical Materials, 2024. 148: p. 114924.
  • Asif, M., et al., High energy ion irradiation effect on electrical and optical properties of polymers. Radiation Physics and Chemistry, 2022. 192: p. 109931.
  • Chapi, S. and H. Devendrappa, Influence of cobalt (II) chloride catalysed on the thermal and optical characterization of PEO based solid polymer electrolytes. Journal of Research Updates in Polymer Science, 2014. 3(4): p. 205.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atomik, Moleküler ve Optik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Handan Aydın 0000-0002-0141-9773

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 26 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Aydın, H. (2024). ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences, 10(1), 174-189. https://doi.org/10.29132/ijpas.1454669
AMA Aydın H. ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):174-189. doi:10.29132/ijpas.1454669
Chicago Aydın, Handan. “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal Ve Optiksel Özellikleri”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 174-89. https://doi.org/10.29132/ijpas.1454669.
EndNote Aydın H (01 Haziran 2024) ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences 10 1 174–189.
IEEE H. Aydın, “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 174–189, 2024, doi: 10.29132/ijpas.1454669.
ISNAD Aydın, Handan. “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal Ve Optiksel Özellikleri”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 174-189. https://doi.org/10.29132/ijpas.1454669.
JAMA Aydın H. ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences. 2024;10:174–189.
MLA Aydın, Handan. “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal Ve Optiksel Özellikleri”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 174-89, doi:10.29132/ijpas.1454669.
Vancouver Aydın H. ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences. 2024;10(1):174-89.

154501544915448154471544615445