Araştırma Makalesi
BibTex RIS Kaynak Göster

Mol oranı, sıcaklık ve su içeriğin Kolin Klorür-Etilen Gliserolden üretilen derin ötektik çözücülerin asitliğine ve viskozitesine etkileri

Yıl 2025, Cilt: 11 Sayı: 1, 71 - 82, 30.06.2025
https://doi.org/10.29132/ijpas.1588013

Öz

Derin ötektik çözücüler (DÖÇ) kendilerine özgü özellikleri ve sahip oldukları doğaya dost yapıları her geçen gün daha çok tercih edilmelerini sağlamaktadır. Etkin kullanılmaları için özelliklerinin değerlendirilmesi önem arz etmektedir. Her ne kadar klasik çözücülere karşı iyi alternatif olmalarına karşın yüksek viskoziteleri bu çözücülerin endüstride kullanımlarını kısıtlamaktadır. Ama bu durum yardımcı çözücü katılarak veya operasyon şartlarının düzenlenmesiyle aşılabilinmektedir. Bu çalışmada, 200C- 600C arasında değişen sıcaklık (293.15-333.15 K), mol oranı (1:1- 1:9) ve yardımcı çözücü katımının derin ötektik çözücünün asitliği ve viskozitesi üzerindeki etkisi incelenmiştir. Genel olarak, bu çalışma sonucu olarak ortam şartları DÖÇ’lerin asitlikleri ve viskoziteleri üzerinde önemli etki göstermiştir. DÖÇ’lerin asitliği ve viskozitesi mol oranı arttıkça azalmış, sıcaklık artışı DÖÇ’lerin viskozitesini olumsuz olarak etkilemiştir. DÖÇ’lerin viskozitelerindeki sıcaklık bağlantılı değişim göstermiş, bu da Vogel-Fulcher-Tammann eşitliğine uyumluluk göstermektedir. Yardımcı çözücü (su) ilavesi DÖÇ’lerin viskozitelerini düşürmüştür. 25%’den fazla su ilavesi viskozitede önemli bir değişim oluşturmamıştır. Ayrıca 1:5 mol oranına dek ek çözücü ilavesi asitliği azaltmıştır, fakat ilave edilen su miktarı asitlik üzerinde anlamlı değişim oluşturmamıştır. Sonuçlar gıda endüstri uygulamalarında kullanılmak için tasarlanan DÖÇ mekanızması hakkında yeni bir bakış açısı sağlamaktadır.

Kaynakça

  • Almeida, P.P.V., Shiwaku, I.A., Maximo, G.J. and Batista, E.A.C. (2021). Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization, Food Chemistry, 352, 129346. 10.1016/j.foodchem.2021.129.
  • Wu, L., Chen, Z., Li, S., Wang, L. and Zhang, J. (2021). Eco-friendly and high- efficient extraction of natural antioxidants from Polygonum aviculare leaves using tailor-made deep eutectic solvents as extractants, Separation and Purification Technology, 262, 118339. 10.1016/j.seppur.2021.118339.
  • Jablonsky, M., Jancikova, V., Sima, J. and Jablonsky, J. (2022). Physical and chemical characterization of water contaninig choline chloride based solvents with lactic acid and dihydric alcohol. Biointerface research in applied chemistry. 13(2). 167. 10.33263/BRIAC132.167.
  • Tang, B. and Row, K,H. (2013). Recent developments in deep eutectic solvents in chemical sciences. Monatshefte fur Chemie. 144(10). 1427-1454. 10.1007/s00706-013-1050-3.
  • Leron, R.B. and Li, M.H. (2012). Olar heat capasitis of choline chloride-based deep eutectic solvents and their binary mixtures with water. Thermochimica Acta. 530. 52-57. 10.1016/j.tca.2011.11.036.
  • Venkatesan, T., Choi, Y. and Kim, Y. (2019). Impact of different extraction solvents on phenolic content and antioxidant potential of Pinus densiflora Bark Extract. BioMed Research International. 14. 3520675. 10.1155/2019/3520675.
  • Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., Gurkan, B., Maginn, E.J., Ragauskas, A., Dadmun, M., Zawodzinski, T.A., Baker, G.A., Tuckerman, M.E., Savinell, R.F. and Sangoro, J.R. (2020). Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 121(3). 1232- 1285. 10.1021/acs.chemrev.0c00385.
  • Diamante, L.M. and Lan, T. (2014). Absolute viscosities of vegetable oils at different temperatures and shear rate range of 64.5 to 4835 s-1. Journal of food processing. 3. 234583. 10.1155/2014/234583.
  • Kehili, M., Isci, A., Thieme, N., Kaltschmitt, M., Zetzl, C. and Smirnova, I. (2022). Microwave-assisted deep eutectic solvent extraction of phenolics from defatted date seeds and its effect on solubilization of carbohydrates. Biomass Conversion and Biorefinery. 14(6). 10.1007/s13399-022-03027-6.
  • Shi, Q., Zhang, X., Zhao, Y., Wu, X., Liu, J., Zhang, Y. and Fang, Z. (2021). Ultrasonic-assisted extraction, calcium alginate encapsulation and storage stability of mulberry pomace phenolics. Journal of Food Measurement and Characterization. 15(14). 10.1007/s11694-021-01021-6.
  • Cotroneo-Figueroa, V.P., Gajardo-Parra, N.F., Lopez-Porfiri, P., Leiva, A., Gonzalez-Miquel, M., Garrido, J.M. and Canales, R.I. (2022). Hydrogen bond donor and alcohol chain length effect on the physicochemical properties of choline chloride based deep eutectic solvents mixed with alcohols, J. Mol. Liq., 345, 116986, 10.1016/j.molliq.2021.116986.
  • Manurung, R., Simanjuntak, G.C., Raja, N.P., Ardian, S., Alhamdi, M.A., Siregar, H. and Zuhri, R.R.S. (2019). Production of choline chloride based deep eutectic solvent with hydrogen bond donor D- glucose and ethylene glycol. IOP conference series materials science and engineering. 505(1). 012134. 10.1088/1757-899X/505/1/012134.
  • Zhao, B.Y., Xu, P., Yang, F.X., Wu, H., Zong, M.H, and Lou, W.Y. (2015). Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from sophora japonica. ACS sustainable chemistry and engineering. 3. 2746- 2755. 10.1021/acssuschemeng.5b00619.
  • Mjalli, F.S. and Mousa, H. (2017). Viscosity of aqueous ionic liquids analogues as a function of water content and temperature. Chinese journal of chemical engineering, 25, 1877-1883. 10.1016/j.cjche.2017.09.008.
  • Gajardo-Parra, N.F., Cotroneo-Figueroa, V.P., Aravena, P., Vesovic, V. and Canales, R.I. (2020). Viscosity of choline chloride based deep eutectic solvents: experiments and modeling, J. Chem. Eng. Data, 65(11), 5581-5592. 10.1021/acs.jced.0c00715.
  • Fan, C., Sebbah, T., Liu, Y. and Cao, X. (2021). Terpenoid-capric acid based natural deep eutectic solvent: Insight into the nature of low viscosity. Cleaner engineering and technology, 3. 100116. 10.1016/j.clet.2021.100116.
  • Al-Dawsari, J.N., Jemai, A.B., Wazeer, I., Makraoui, S., AlMansour, M.A. and Kali, M.K.H. (2020). Fitting of experimental viscosity to temperature data for deep eutectic solvents. Journal of molecular liquids. 310. 113127. 10.1016/j.molliq.2020.113127.
  • Ghaedi, H., Ayoub, M., Sufian, S., Shariff, A.M. and Lal, B. (2017). The study on temperature dependence of viscosity and surface tension of several phosphonium-based deep eutectic solvents. Journal of molecular liquids. 241. 500-510. 10.1016/j.molliq.2017.06.024.
  • Savi, L.K., Carpine, D., Nina, W., Ribani, R.H. and Haminiuk, C.W.I. (2019). Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents. Fluid phase equilibria. 488. 40-47. 10.1016/j.fluid.2019.01.025.
  • Teng, Z., Wang, L., Huang, B., Yu, Y., Liu, J. and Li, T. (2022). Synthesis of green deep eutectic solvents for pretreatment wheat straw: enhance the solubility of typical lignocellulose. Sustainability. 14(2). 657. 10.3390/su14020657.
  • Abdullah, G.H. and Kadhom, M.A. (2016). Studying of two choline chloride’s deep eutectic solvents in their aqueous mixtures. International journal of engineering research and development. 12(9). 73-80.
  • Jablonsky, M., Majova, V., Ondrigova, K. and Sima, J. (2015). Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose. 5. 3031-3045. 10.1007/s10570-019-02322-2.
  • Sirvio, J.A., Haataja, R., Kantola, A.M., Terhi, S. and Henrikki, L. (2022). Insights into the role of molar ratio and added water in the properties of choline chloride and urea-based eutectic mixtures and their cellulose swelling capacity. Physical chemistry chemical physics. 46. 28609-28620. 10.1039/D2CP04119G.
  • Jancikova, V., Jablonsky, M., Volekova, K. and Surina, I. (2022). Summarizing the effect of acidity and water content of deep eutectic solvent like mixtures- A review. Energies. 15(24). 9333. 10.3390/en15249333.
  • Sekharan, T.R., Chandira, R.M., Rajesh, S.C., Tamilvanan, S., Vijayakumar, C.T. and Venkateswarlu, B.S. (2021). pH, viscosity of hydrophobic based natural deep eutectic solvents and the effect of curcumin solubility in it. Biointerface research in applied chemistry. 11(6). 14620-14633. 10.33263/BRIAC116.1462014633.
  • Skulcova, A., Russ, A., Jablonsky, M. and Sima, J. (2018). The pH behavior of seventeen deep eutectic solvents. BioRes. 13(3). 5042-5051. 10.15376/biores.13.3.5042-5051.
  • Jablonsky, M., Skulcova, A., Malvis, A. and Sima, J. (2018). Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol. 282. 46-66. 10.1016/j.jbiotec.2018.06.349.
  • Panic, M., Radovic, M., Bubalo, M.C., Radosevic, K., Coutinho, J.A.P., Redovnikovic, I.R. and Jurinjak, T.A. (2022). Prediction of pH value of aqueous acidic and basic deep eutectic solvent using COSMO-RS profiles molecular descriptors. Molecules. 27(14). 4489. 10.3390/molecules27144489.
  • Ghaedi, H., Ayoub, M., Sufian, S., Hailegiorgis, S.M., Murshid, G. and Khan, S.N. (2018). Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. J Chem Therm. 116. 50-60. 10.1016/j.jct.2017.08.029.
  • Khokhar, V., Dhingra, D. and Pandey, S.K. (2022). Effect of temperature and composition on density and dynamic viscosity of (lanthanide metal salts + urea) deep eutectic solvents. Journal of molecular liquids. 360(11). 119396. 10.1016/j.molliq.2022.119396.
  • Kareem, M.A., Mjalli, F.S., Hashim, M.A. and AlNashef, I.M (2010). Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data. 55(11). 4632-4637. 10.1021/je100104v.
  • Gabriele, F., Chiarini, M., Germani, R., Tiecco, M. and Spreti, N. (2019). Effect of water addition on choline chloride/ glycol deep eutectic solvents: characterization of their structural and physicochemical properties. Journal of molecular liquids. 291. 111301. 10.1016/j.molliq.2019.111301.
  • Picchio, M.L., Minudri, D., Mantione, D., Miryam, C.G., Gregorio, G.G., Ruth, S., Muller, A.J. and Tome, L.C. (2022). Minari RJ, Mecerreyes D. Natural deep eutectic solvents based on choline chloride and phenolic compounds as efficient bioadhesives and corrosion protectors, ACS Sustainable Chem. Eng, 10(25), 8135- 8142. 10.1021/acssuschemeng.2c01976.
  • Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H. (2013). Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 766, 61-68. 10.1016/j.aca.2012.12.019.
  • Nowosielski, B., Jamrogiewicz, M., Luczak, J., Tercjak, A., Warminska, D. (2023). Effect of temperature and composition on physical properties of deep eutectic solvents based on 2-(methylamino) ethanol- measurement and prediction. Journal of Molecular Liquids. 371, 121069. 10.1016/j.molliq.2022.121069.
  • Jancikova, V., Jablonsky, M., Volekova, K., Surina, I. (2022). Summarizing the effect of acidity and water content of deep eutectic solvent-like mixtures- a review. Energies. 15(24). 9333. 10.3390/en15249333.
  • Aydin, C.M., Guven, A. (2023). Enhanced total phenolic content extraction from cucumis melo L. (Kultik) kernel by deep eutectic solvent (DES). Middle east jounal of science. 9(1). 31-41. 10.51477/mejs.1236628.
  • Gabriele, F., Chiarini, M., Germani, R., Spreti, N. (2023). Understanding the role of temperature in structural changes of choline chloride/glycols deep eutectic solvents. Journal of molecular liquids. 385, 122332. 10.1016/j.molliq.2023.122332.

Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol

Yıl 2025, Cilt: 11 Sayı: 1, 71 - 82, 30.06.2025
https://doi.org/10.29132/ijpas.1588013

Öz

Deep eutectic solvents (DESs) become preferred solvents owing to unique features and promising environmentally friendly nature they have. Evaluation their properties is essential in order to use them effectively. Even though DESs are a good alternative to classic solvents, their viscosity is high, limiting their usage in industrial applications. However, this can be overcome by adding cosolvent or varying application conditions. In this study, the effect of temperature ranging from 200C to 600C (293.15- 333.15 K), molar ratio (1:1 to 1:9) and cosolvent addition (water) on acidity and viscosity of DES were investigated. Overall, as a result of this study, operation conditions had a significant effect on acidity and viscosity of DESs. Acidity and viscosity of DESs were on decrease as molar ratio increased, and the increase in temperature negatively affected viscosity of DESs. Dynamic viscosity of DESs were temperature dependence, following Vogel-Fulcher-Tammann (VFT) equality. Cosolvent addition decreased viscosity of DESs. Addition of water higher than 25% did not have a significant effect on viscosity. In addition, water addition decreased acidity of DES up to 1:5 molar ratio, but no significant effect regardless of the amount of water addition on the acidity was determined. These results provide a new perceptive about the mechanism of DES designed for usage in food applications.

Kaynakça

  • Almeida, P.P.V., Shiwaku, I.A., Maximo, G.J. and Batista, E.A.C. (2021). Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization, Food Chemistry, 352, 129346. 10.1016/j.foodchem.2021.129.
  • Wu, L., Chen, Z., Li, S., Wang, L. and Zhang, J. (2021). Eco-friendly and high- efficient extraction of natural antioxidants from Polygonum aviculare leaves using tailor-made deep eutectic solvents as extractants, Separation and Purification Technology, 262, 118339. 10.1016/j.seppur.2021.118339.
  • Jablonsky, M., Jancikova, V., Sima, J. and Jablonsky, J. (2022). Physical and chemical characterization of water contaninig choline chloride based solvents with lactic acid and dihydric alcohol. Biointerface research in applied chemistry. 13(2). 167. 10.33263/BRIAC132.167.
  • Tang, B. and Row, K,H. (2013). Recent developments in deep eutectic solvents in chemical sciences. Monatshefte fur Chemie. 144(10). 1427-1454. 10.1007/s00706-013-1050-3.
  • Leron, R.B. and Li, M.H. (2012). Olar heat capasitis of choline chloride-based deep eutectic solvents and their binary mixtures with water. Thermochimica Acta. 530. 52-57. 10.1016/j.tca.2011.11.036.
  • Venkatesan, T., Choi, Y. and Kim, Y. (2019). Impact of different extraction solvents on phenolic content and antioxidant potential of Pinus densiflora Bark Extract. BioMed Research International. 14. 3520675. 10.1155/2019/3520675.
  • Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., Gurkan, B., Maginn, E.J., Ragauskas, A., Dadmun, M., Zawodzinski, T.A., Baker, G.A., Tuckerman, M.E., Savinell, R.F. and Sangoro, J.R. (2020). Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 121(3). 1232- 1285. 10.1021/acs.chemrev.0c00385.
  • Diamante, L.M. and Lan, T. (2014). Absolute viscosities of vegetable oils at different temperatures and shear rate range of 64.5 to 4835 s-1. Journal of food processing. 3. 234583. 10.1155/2014/234583.
  • Kehili, M., Isci, A., Thieme, N., Kaltschmitt, M., Zetzl, C. and Smirnova, I. (2022). Microwave-assisted deep eutectic solvent extraction of phenolics from defatted date seeds and its effect on solubilization of carbohydrates. Biomass Conversion and Biorefinery. 14(6). 10.1007/s13399-022-03027-6.
  • Shi, Q., Zhang, X., Zhao, Y., Wu, X., Liu, J., Zhang, Y. and Fang, Z. (2021). Ultrasonic-assisted extraction, calcium alginate encapsulation and storage stability of mulberry pomace phenolics. Journal of Food Measurement and Characterization. 15(14). 10.1007/s11694-021-01021-6.
  • Cotroneo-Figueroa, V.P., Gajardo-Parra, N.F., Lopez-Porfiri, P., Leiva, A., Gonzalez-Miquel, M., Garrido, J.M. and Canales, R.I. (2022). Hydrogen bond donor and alcohol chain length effect on the physicochemical properties of choline chloride based deep eutectic solvents mixed with alcohols, J. Mol. Liq., 345, 116986, 10.1016/j.molliq.2021.116986.
  • Manurung, R., Simanjuntak, G.C., Raja, N.P., Ardian, S., Alhamdi, M.A., Siregar, H. and Zuhri, R.R.S. (2019). Production of choline chloride based deep eutectic solvent with hydrogen bond donor D- glucose and ethylene glycol. IOP conference series materials science and engineering. 505(1). 012134. 10.1088/1757-899X/505/1/012134.
  • Zhao, B.Y., Xu, P., Yang, F.X., Wu, H., Zong, M.H, and Lou, W.Y. (2015). Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from sophora japonica. ACS sustainable chemistry and engineering. 3. 2746- 2755. 10.1021/acssuschemeng.5b00619.
  • Mjalli, F.S. and Mousa, H. (2017). Viscosity of aqueous ionic liquids analogues as a function of water content and temperature. Chinese journal of chemical engineering, 25, 1877-1883. 10.1016/j.cjche.2017.09.008.
  • Gajardo-Parra, N.F., Cotroneo-Figueroa, V.P., Aravena, P., Vesovic, V. and Canales, R.I. (2020). Viscosity of choline chloride based deep eutectic solvents: experiments and modeling, J. Chem. Eng. Data, 65(11), 5581-5592. 10.1021/acs.jced.0c00715.
  • Fan, C., Sebbah, T., Liu, Y. and Cao, X. (2021). Terpenoid-capric acid based natural deep eutectic solvent: Insight into the nature of low viscosity. Cleaner engineering and technology, 3. 100116. 10.1016/j.clet.2021.100116.
  • Al-Dawsari, J.N., Jemai, A.B., Wazeer, I., Makraoui, S., AlMansour, M.A. and Kali, M.K.H. (2020). Fitting of experimental viscosity to temperature data for deep eutectic solvents. Journal of molecular liquids. 310. 113127. 10.1016/j.molliq.2020.113127.
  • Ghaedi, H., Ayoub, M., Sufian, S., Shariff, A.M. and Lal, B. (2017). The study on temperature dependence of viscosity and surface tension of several phosphonium-based deep eutectic solvents. Journal of molecular liquids. 241. 500-510. 10.1016/j.molliq.2017.06.024.
  • Savi, L.K., Carpine, D., Nina, W., Ribani, R.H. and Haminiuk, C.W.I. (2019). Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents. Fluid phase equilibria. 488. 40-47. 10.1016/j.fluid.2019.01.025.
  • Teng, Z., Wang, L., Huang, B., Yu, Y., Liu, J. and Li, T. (2022). Synthesis of green deep eutectic solvents for pretreatment wheat straw: enhance the solubility of typical lignocellulose. Sustainability. 14(2). 657. 10.3390/su14020657.
  • Abdullah, G.H. and Kadhom, M.A. (2016). Studying of two choline chloride’s deep eutectic solvents in their aqueous mixtures. International journal of engineering research and development. 12(9). 73-80.
  • Jablonsky, M., Majova, V., Ondrigova, K. and Sima, J. (2015). Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose. 5. 3031-3045. 10.1007/s10570-019-02322-2.
  • Sirvio, J.A., Haataja, R., Kantola, A.M., Terhi, S. and Henrikki, L. (2022). Insights into the role of molar ratio and added water in the properties of choline chloride and urea-based eutectic mixtures and their cellulose swelling capacity. Physical chemistry chemical physics. 46. 28609-28620. 10.1039/D2CP04119G.
  • Jancikova, V., Jablonsky, M., Volekova, K. and Surina, I. (2022). Summarizing the effect of acidity and water content of deep eutectic solvent like mixtures- A review. Energies. 15(24). 9333. 10.3390/en15249333.
  • Sekharan, T.R., Chandira, R.M., Rajesh, S.C., Tamilvanan, S., Vijayakumar, C.T. and Venkateswarlu, B.S. (2021). pH, viscosity of hydrophobic based natural deep eutectic solvents and the effect of curcumin solubility in it. Biointerface research in applied chemistry. 11(6). 14620-14633. 10.33263/BRIAC116.1462014633.
  • Skulcova, A., Russ, A., Jablonsky, M. and Sima, J. (2018). The pH behavior of seventeen deep eutectic solvents. BioRes. 13(3). 5042-5051. 10.15376/biores.13.3.5042-5051.
  • Jablonsky, M., Skulcova, A., Malvis, A. and Sima, J. (2018). Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol. 282. 46-66. 10.1016/j.jbiotec.2018.06.349.
  • Panic, M., Radovic, M., Bubalo, M.C., Radosevic, K., Coutinho, J.A.P., Redovnikovic, I.R. and Jurinjak, T.A. (2022). Prediction of pH value of aqueous acidic and basic deep eutectic solvent using COSMO-RS profiles molecular descriptors. Molecules. 27(14). 4489. 10.3390/molecules27144489.
  • Ghaedi, H., Ayoub, M., Sufian, S., Hailegiorgis, S.M., Murshid, G. and Khan, S.N. (2018). Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. J Chem Therm. 116. 50-60. 10.1016/j.jct.2017.08.029.
  • Khokhar, V., Dhingra, D. and Pandey, S.K. (2022). Effect of temperature and composition on density and dynamic viscosity of (lanthanide metal salts + urea) deep eutectic solvents. Journal of molecular liquids. 360(11). 119396. 10.1016/j.molliq.2022.119396.
  • Kareem, M.A., Mjalli, F.S., Hashim, M.A. and AlNashef, I.M (2010). Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data. 55(11). 4632-4637. 10.1021/je100104v.
  • Gabriele, F., Chiarini, M., Germani, R., Tiecco, M. and Spreti, N. (2019). Effect of water addition on choline chloride/ glycol deep eutectic solvents: characterization of their structural and physicochemical properties. Journal of molecular liquids. 291. 111301. 10.1016/j.molliq.2019.111301.
  • Picchio, M.L., Minudri, D., Mantione, D., Miryam, C.G., Gregorio, G.G., Ruth, S., Muller, A.J. and Tome, L.C. (2022). Minari RJ, Mecerreyes D. Natural deep eutectic solvents based on choline chloride and phenolic compounds as efficient bioadhesives and corrosion protectors, ACS Sustainable Chem. Eng, 10(25), 8135- 8142. 10.1021/acssuschemeng.2c01976.
  • Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H. (2013). Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 766, 61-68. 10.1016/j.aca.2012.12.019.
  • Nowosielski, B., Jamrogiewicz, M., Luczak, J., Tercjak, A., Warminska, D. (2023). Effect of temperature and composition on physical properties of deep eutectic solvents based on 2-(methylamino) ethanol- measurement and prediction. Journal of Molecular Liquids. 371, 121069. 10.1016/j.molliq.2022.121069.
  • Jancikova, V., Jablonsky, M., Volekova, K., Surina, I. (2022). Summarizing the effect of acidity and water content of deep eutectic solvent-like mixtures- a review. Energies. 15(24). 9333. 10.3390/en15249333.
  • Aydin, C.M., Guven, A. (2023). Enhanced total phenolic content extraction from cucumis melo L. (Kultik) kernel by deep eutectic solvent (DES). Middle east jounal of science. 9(1). 31-41. 10.51477/mejs.1236628.
  • Gabriele, F., Chiarini, M., Germani, R., Spreti, N. (2023). Understanding the role of temperature in structural changes of choline chloride/glycols deep eutectic solvents. Journal of molecular liquids. 385, 122332. 10.1016/j.molliq.2023.122332.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Çağlar Mert Aydın 0000-0003-4078-7410

Gönderilme Tarihi 19 Kasım 2024
Kabul Tarihi 28 Nisan 2025
Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Aydın, Ç. M. (2025). Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol. International Journal of Pure and Applied Sciences, 11(1), 71-82. https://doi.org/10.29132/ijpas.1588013
AMA Aydın ÇM. Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol. International Journal of Pure and Applied Sciences. Haziran 2025;11(1):71-82. doi:10.29132/ijpas.1588013
Chicago Aydın, Çağlar Mert. “Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol”. International Journal of Pure and Applied Sciences 11, sy. 1 (Haziran 2025): 71-82. https://doi.org/10.29132/ijpas.1588013.
EndNote Aydın ÇM (01 Haziran 2025) Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol. International Journal of Pure and Applied Sciences 11 1 71–82.
IEEE Ç. M. Aydın, “Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol”, International Journal of Pure and Applied Sciences, c. 11, sy. 1, ss. 71–82, 2025, doi: 10.29132/ijpas.1588013.
ISNAD Aydın, Çağlar Mert. “Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol”. International Journal of Pure and Applied Sciences 11/1 (Haziran2025), 71-82. https://doi.org/10.29132/ijpas.1588013.
JAMA Aydın ÇM. Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol. International Journal of Pure and Applied Sciences. 2025;11:71–82.
MLA Aydın, Çağlar Mert. “Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol”. International Journal of Pure and Applied Sciences, c. 11, sy. 1, 2025, ss. 71-82, doi:10.29132/ijpas.1588013.
Vancouver Aydın ÇM. Effects of molar ratio, temperature and water content on acidity and viscosity of deep eutectic solvent formed from Choline Chloride-Ethylene Glycerol. International Journal of Pure and Applied Sciences. 2025;11(1):71-82.