Araştırma Makalesi
BibTex RIS Kaynak Göster

Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis

Yıl 2025, Cilt: 11 Sayı: 2, 588 - 603, 29.12.2025
https://doi.org/10.29132/ijpas.1800457

Öz

High Electron Mobility Transistors (HEMTs) based on wide band gap semiconductors and two-dimensional electron gas (2-DEG) channels are crucial for high power and radio frequency applications. Gallium nitride (GaN)-based HEMTs offer superior breakdown voltage, electron transport characteristics, and thermal conductivity for next-generation power electronics. This study investigates the effect of gate-drain distance (Lgd) on electronic characteristics of a multi-layer graded AlₓGa₁₋ₓN HEMT structure (x = 0.05-0.30) on Si substrate using finite element method simulation through SimuApsys modeling software. The Lgd parameter was systematically varied between 0.8 μm and 30 μm to analyze breakdown voltage (Vbr), on-resistance (Ron), current-voltage char-acteristics, and electric field distribution. Simulation results reveal critical trade-offs: short Lgd (3-6 μm) provides low Ron and high current density (Ids,max ≈ 3.95 mA/mm) but lower Vbr (~135V) due to concentrated electric fields, while long Lgd (24-30 μm) achieves high Vbr (~380V) through distributed electric field profiles but with increased Ron and reduced current capacity (~0.65 mA/mm). Application-specific Lgd optimization guidelines are established: 3-6 μm for <200V applications, 12-24 μm for 200-350V, and ≥30 μm for >350V. This simulation approach enables effective device design optimi-zation without expensive experimental fabrication.

Kaynakça

  • [1] J. Hu, S. Stoffels, M. Zhao, A. Tallarico, I. Rossetto, M. Meneghini, X. Kang, B. Bakeroot, D. Marcon, B. Kaczer and e. al., "Time-Dependent Breakdown Mechanisms and Reliability Improvement in Edge Terminated AlGaN/GaN Schottky Diodes under HTRB Tests.," IEEE Electron. Device Lett., vol. 38, p. 371–374, 2017.
  • [2] O. Çiçek and Y. Badali, "A Review: Breakdown Voltage Enhancement of GaN Semiconductors-Based High Electron Mobility Transistors," IEEE Transactions on Device and Materials Reliability, vol. 24, no. 2, pp. 275-286, 2024.
  • [3] M. Odabaşı, "GaN HEMT'lerin yüksek sıcaklık kararlılığı üzerine deneysel çalışmalar,," Doktora Tezi, 2021.
  • [4] H. Dikme, "GaN tabanlı HEMT’lerde dislokasyon yoğunluğunun azaltılması üzerine çalışmalar,," Doktora Tezi, 2006.
  • [5] L. F. Eastman and e. al., "The impact of buffer design on GaN HEMT performance,," EEE Transactions on Electron Devices, p. 479–485, 2001.
  • [6] Y. F. Wu and e. al., "High power AlGaN/GaN HEMTs with thick GaN buffer layers,," IEEE Electron Device Letters, p. 50–52, 1998.
  • [7] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari and e. al., "AlGaN/AlN/GaN high-power microwave HEMT," IEEE Electron Device Letters, vol. 22, no. 10, p. 457–459, 2001.
  • [8] L. Guo, X. Wang, C. Wang, H. Xiao, J. Ran, W. Luo and e. al., "The influence of 1 nm AlN interlayer on properties of the Al0. 3Ga0. 7N/AlN/GaN HEMT structure," Microelectronics Journal, vol. 39, no. 5, pp. 777-781, 2008.
  • [9] Y. Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki and I. Akasaki, "Energy band‐gap bowing parameter in an Al x Ga1− x N alloy," Journal of applied physics, vol. 61, no. 9, pp. 4540-4543, 1987.
  • [10] M. A. Acar, Fabrication, modeling and characterization of GaN HEMTs, and design of high power MMIC amplifiers, Bilkent Universitesi, 2009.
  • [11] S. (. Taking, AlN/GaN MOS-HEMTs Technology, University of Glasgow, 2012, p. pp. 501–507.
  • [12] M. F. Brady and e. al., "Status of large diameter SiC crystal growth for electronic and optical applications.," Materials Science Forum, vol. 338, pp. 3-8, 2000.
  • [13] S. T. Sheppard, W. L. Pribble, D. T. Emerson, Z. Ring, R. P. Smith, S. T. Allen and J. W. ... & Palmour, "Technology development for Gan/AlGaN HEMT hybrid and MMIC amplifiers on semi-insulating SiC substrates.," in Proceedings 2000 IEEE/Cornell Conference on High Performance Devices, 2000.
  • [14] N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars and U. K. Mishra, "High breakdown GaN HEMT with overlapping gate structure," IEEE Electron Device Letters, vol. 21, no. 9, p. 421–423, 2000.
  • [15] T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita and Y. ... & Tokuda, "AlGaN channel HEMT with extremely high breakdown voltage," IEEE Transactions on Electron Devices, vol. 60, no. 3, p. 1042–1048, 2013.
  • [16] H. S. Lee, D. Piedra, M. Sun, X. Gao, S. Guo and T. Palacios, "3000-V 4.3𝑚Ω⋅𝑐𝑚2 InAlN/GaN MOSHEMTs With AlGaN Back Barrier," IEEE Electron Device Letters, vol. 33, no. 7, pp. 982-984, 2012.
  • [17] B. Günes and e. al., "Improved drain lag by reduced surface current in GaN HEMT via an ultrathin HfO2 blanket layer," Semicond. Sci. Technol., vol. 38, no. 65002, 2023.
  • [18] J. Cheng and e. al., "Breakdown voltage enhancement in ScAlN/GaN high-electron-mobility transistors by high-k bismuth zinc niobateoxide," IEEE Transactions on Electron Devices, vol. 68, no. 7, p. 3333–3338, 2021.
  • [19] G. Xie and e. al., "Breakdown-voltage-enhancement technique for RFbased AlGaN/GaN HEMTs with a source-connected air-bridge field plate," IEEE Electron Device Lett, vol. 33, no. 5, p. 670–672, 2012.
  • [20] S. Li and Y. Fu, 3D TCAD Simulation for Semiconductor Processes Devices and Optoelectronics, New York: Springer-Verlag, 2012.
  • [21] A. Toprak, "Yüksek Güç Uygulamaları İçin Galyum Nitrür Temelli Yüksek Elektron Hareketlilikli Transistör Tasarımı, Fabrikasyonu ve Karakterizasyonu," Yüksek Lisans Tezi, 2020.
  • [22] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Katoh and T. Enya, "GaN power transistors on Si substrates for," Proceedings of the IEEE, vol. 98, no. 7, pp. 1151-1161, 2010.
  • [23] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2009.
  • [24] U. K. Mishra, L. Shen, T. E. Kazior and Y.-F. Wu, "GaN-based RF power devices and amplifiers," Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008.

Çok Katmanlı AlGaN Yüksek Elektron Hareketliliği Transistörlerinde Kapı-Akaç Mesafesi Optimizasyonu: Sonlu Elemanlar Analizi

Yıl 2025, Cilt: 11 Sayı: 2, 588 - 603, 29.12.2025
https://doi.org/10.29132/ijpas.1800457

Öz

Geniş bant aralığı yarı iletkenlere ve iki boyutlu elektron gazı (2-DEG) kanallarına dayanan Yüksek Elektron Hareketlilik Transistörleri (HEMT'ler), yüksek güç ve radyo frekansı uygulamaları için çok önemlidir. Galyum nitrür (GaN) tabanlı HEMT'ler, yeni nesil güç elektroniği için üstün kırılma gerilimi, elektron taşıma özellikleri ve termal iletkenlik sunar. Bu çalışma, SimuApsys modelleme yazılımı aracılığıyla sonlu ele-manlar yöntemi simülasyonu kullanarak Si substrat üzerinde çok katmanlı kademeli AlₓGa₁₋ₓN HEMT yapısının (x = 0.05-0.30) elektronik özellikleri üzerinde kapı-akaç mesafesinin (Lgd) etkisini araştırmaktadır. Lgd parametresi, kırılma voltajı (Vbr), direnç (Ron), akım-gerilim özellikleri ve elektrik alan dağılımını analiz etmek için 0,8 μm ile 30 μm arasında sistematik olarak değiştirilmiştir. Simülasyon sonuçları kritik ödünleşimleri ortaya koymaktadır: kısa Lgd (3-6 μm) düşük Ron ve yüksek akım yoğunluğu (Ids,max ≈ 3,95 mA/mm) sağlar, ancak yoğun elektrik alanları nedeniyle daha düşük Vbr (~135V) sağlarken, uzun Lgd (24-30 μm) dağıtılmış elektrik alanı profilleri sayesinde yüksek Vbr (~380V) sağlar, ancak Ron artar ve akım kapasitesi azalır (~0,65 mA/mm). Uygula-maya özel Lgd optimizasyon kılavuzları oluşturulmuştur: <200V uygulamalar için 3-6 μm, 200-350V için 12-24 μm ve >350V için ≥30 μm. Bu simülasyon yaklaşımı, pahalı deneysel üretim olmadan etkili cihaz tasarımı optimizasyonu sağlar.

Kaynakça

  • [1] J. Hu, S. Stoffels, M. Zhao, A. Tallarico, I. Rossetto, M. Meneghini, X. Kang, B. Bakeroot, D. Marcon, B. Kaczer and e. al., "Time-Dependent Breakdown Mechanisms and Reliability Improvement in Edge Terminated AlGaN/GaN Schottky Diodes under HTRB Tests.," IEEE Electron. Device Lett., vol. 38, p. 371–374, 2017.
  • [2] O. Çiçek and Y. Badali, "A Review: Breakdown Voltage Enhancement of GaN Semiconductors-Based High Electron Mobility Transistors," IEEE Transactions on Device and Materials Reliability, vol. 24, no. 2, pp. 275-286, 2024.
  • [3] M. Odabaşı, "GaN HEMT'lerin yüksek sıcaklık kararlılığı üzerine deneysel çalışmalar,," Doktora Tezi, 2021.
  • [4] H. Dikme, "GaN tabanlı HEMT’lerde dislokasyon yoğunluğunun azaltılması üzerine çalışmalar,," Doktora Tezi, 2006.
  • [5] L. F. Eastman and e. al., "The impact of buffer design on GaN HEMT performance,," EEE Transactions on Electron Devices, p. 479–485, 2001.
  • [6] Y. F. Wu and e. al., "High power AlGaN/GaN HEMTs with thick GaN buffer layers,," IEEE Electron Device Letters, p. 50–52, 1998.
  • [7] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari and e. al., "AlGaN/AlN/GaN high-power microwave HEMT," IEEE Electron Device Letters, vol. 22, no. 10, p. 457–459, 2001.
  • [8] L. Guo, X. Wang, C. Wang, H. Xiao, J. Ran, W. Luo and e. al., "The influence of 1 nm AlN interlayer on properties of the Al0. 3Ga0. 7N/AlN/GaN HEMT structure," Microelectronics Journal, vol. 39, no. 5, pp. 777-781, 2008.
  • [9] Y. Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki and I. Akasaki, "Energy band‐gap bowing parameter in an Al x Ga1− x N alloy," Journal of applied physics, vol. 61, no. 9, pp. 4540-4543, 1987.
  • [10] M. A. Acar, Fabrication, modeling and characterization of GaN HEMTs, and design of high power MMIC amplifiers, Bilkent Universitesi, 2009.
  • [11] S. (. Taking, AlN/GaN MOS-HEMTs Technology, University of Glasgow, 2012, p. pp. 501–507.
  • [12] M. F. Brady and e. al., "Status of large diameter SiC crystal growth for electronic and optical applications.," Materials Science Forum, vol. 338, pp. 3-8, 2000.
  • [13] S. T. Sheppard, W. L. Pribble, D. T. Emerson, Z. Ring, R. P. Smith, S. T. Allen and J. W. ... & Palmour, "Technology development for Gan/AlGaN HEMT hybrid and MMIC amplifiers on semi-insulating SiC substrates.," in Proceedings 2000 IEEE/Cornell Conference on High Performance Devices, 2000.
  • [14] N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars and U. K. Mishra, "High breakdown GaN HEMT with overlapping gate structure," IEEE Electron Device Letters, vol. 21, no. 9, p. 421–423, 2000.
  • [15] T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita and Y. ... & Tokuda, "AlGaN channel HEMT with extremely high breakdown voltage," IEEE Transactions on Electron Devices, vol. 60, no. 3, p. 1042–1048, 2013.
  • [16] H. S. Lee, D. Piedra, M. Sun, X. Gao, S. Guo and T. Palacios, "3000-V 4.3𝑚Ω⋅𝑐𝑚2 InAlN/GaN MOSHEMTs With AlGaN Back Barrier," IEEE Electron Device Letters, vol. 33, no. 7, pp. 982-984, 2012.
  • [17] B. Günes and e. al., "Improved drain lag by reduced surface current in GaN HEMT via an ultrathin HfO2 blanket layer," Semicond. Sci. Technol., vol. 38, no. 65002, 2023.
  • [18] J. Cheng and e. al., "Breakdown voltage enhancement in ScAlN/GaN high-electron-mobility transistors by high-k bismuth zinc niobateoxide," IEEE Transactions on Electron Devices, vol. 68, no. 7, p. 3333–3338, 2021.
  • [19] G. Xie and e. al., "Breakdown-voltage-enhancement technique for RFbased AlGaN/GaN HEMTs with a source-connected air-bridge field plate," IEEE Electron Device Lett, vol. 33, no. 5, p. 670–672, 2012.
  • [20] S. Li and Y. Fu, 3D TCAD Simulation for Semiconductor Processes Devices and Optoelectronics, New York: Springer-Verlag, 2012.
  • [21] A. Toprak, "Yüksek Güç Uygulamaları İçin Galyum Nitrür Temelli Yüksek Elektron Hareketlilikli Transistör Tasarımı, Fabrikasyonu ve Karakterizasyonu," Yüksek Lisans Tezi, 2020.
  • [22] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Katoh and T. Enya, "GaN power transistors on Si substrates for," Proceedings of the IEEE, vol. 98, no. 7, pp. 1151-1161, 2010.
  • [23] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2009.
  • [24] U. K. Mishra, L. Shen, T. E. Kazior and Y.-F. Wu, "GaN-based RF power devices and amplifiers," Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotonik, Optoelektronik ve Optik İletişim, Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Yasin Doğan Bu kişi benim 0000-0002-3065-9864

Osman Çiçek 0000-0002-2765-4165

Gönderilme Tarihi 9 Ekim 2025
Kabul Tarihi 19 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Doğan, Y., & Çiçek, O. (2025). Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis. International Journal of Pure and Applied Sciences, 11(2), 588-603. https://doi.org/10.29132/ijpas.1800457
AMA Doğan Y, Çiçek O. Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis. International Journal of Pure and Applied Sciences. Aralık 2025;11(2):588-603. doi:10.29132/ijpas.1800457
Chicago Doğan, Yasin, ve Osman Çiçek. “Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis”. International Journal of Pure and Applied Sciences 11, sy. 2 (Aralık 2025): 588-603. https://doi.org/10.29132/ijpas.1800457.
EndNote Doğan Y, Çiçek O (01 Aralık 2025) Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis. International Journal of Pure and Applied Sciences 11 2 588–603.
IEEE Y. Doğan ve O. Çiçek, “Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis”, International Journal of Pure and Applied Sciences, c. 11, sy. 2, ss. 588–603, 2025, doi: 10.29132/ijpas.1800457.
ISNAD Doğan, Yasin - Çiçek, Osman. “Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis”. International Journal of Pure and Applied Sciences 11/2 (Aralık2025), 588-603. https://doi.org/10.29132/ijpas.1800457.
JAMA Doğan Y, Çiçek O. Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis. International Journal of Pure and Applied Sciences. 2025;11:588–603.
MLA Doğan, Yasin ve Osman Çiçek. “Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis”. International Journal of Pure and Applied Sciences, c. 11, sy. 2, 2025, ss. 588-03, doi:10.29132/ijpas.1800457.
Vancouver Doğan Y, Çiçek O. Gate-Drain Distance Optimization in Multi-Layer AlGaN High Electron Mobility Transistors: A Finite Element Analysis. International Journal of Pure and Applied Sciences. 2025;11(2):588-603.