Araştırma Makalesi
BibTex RIS Kaynak Göster

Tunceli İli İçin Üç Boyutlu (3B) Havalimanı Pist Tasarımı Modeli

Yıl 2025, Cilt: 11 Sayı: 2, 616 - 639, 29.12.2025
https://doi.org/10.29132/ijpas.1811059

Öz

Bu araştırma makalesi, coğrafi olarak zorlu bir topoğrafyaya sahip olan Tunceli ili için bir havalimanı pisti tasarımını ele almaktadır. Çalışma, karmaşık arazilerde geleneksel iki boyutlu (2B) analizlerin yetersizliklerini vurgulamakta ve üç boyutlu (3B) modellemeye dayalı bir karar destek yaklaşımı önermektedir. Bu kapsamda iki alternatif saha değerlendirilmiştir. Geleneksel 2B yöntemlerle analiz edilen ilk saha, aşırı doğal eğim ve belirgin mania penetrasyonları nedeniyle uygun bulunmamıştır. Sayısal Yükseklik Modeli (DEM) verilerinin Blender yazılımında kullanıldığı üç boyutlu ortamda analiz edilen ikinci saha ise, Mania Sınırlandırma Yüzeylerinin (OLS) hacimsel olarak modellenmesine imkân tanımış ve arazi-engel etkileşimlerinin daha gerçekçi biçimde temsil edilmesini sağlamıştır. Bu çalışmada, ICAO Kod 4C sınıfında yer alan ve Türkiye’de iç hat uçuşlarında yaygın olarak kullanılan Boeing 737-800 uçağı, havalimanı pisti tasarımı için referans uçak olarak seçilmiştir. Saha özelindeki rakım ve sıcaklık koşulları dikkate alındığında gerekli pist uzunluğu 3200 metre olarak hesaplanmıştır. Üç boyutlu analizler, kuzey-güney doğrultusundaki pist yerleşiminin yaklaşma, kalkış tırmanışı ve iç yatay yüzey kriterlerinin tamamıyla uyumlu olduğunu göstermiştir. Genel olarak elde edilen sonuçlar, 3B veri odaklı yöntemlerin dağlık bölgelerdeki havalimanı planlamalarında geleneksel 2B yaklaşımlara kıyasla daha güvenilir ve daha hassas bir değerlendirme çerçevesi sunduğunu ortaya koymaktadır.

Kaynakça

  • [1] Republic of Türkiye, Ministry of Transport and Infrastructure, Airport Planning Principles Guide, Ankara, Türkiye, 2021.
  • [2] Directorate General of Civil Aviation (DGCA / SHGM), Airport Design Criteria Directive (SHT-HTK), Ankara, Türkiye: DGCA Publications, 2020. [Online]. Available: https://www.shgm.gov.tr
  • [3] Directorate General of Civil Aviation (DGCA / SHGM), Obstacle Limitation Surfaces Directive (SHT-Mania Planı), Ankara, Türkiye: DGCA Publications, 2020. [Online]. Available: https://www.shgm.gov.tr
  • [4] International Civil Aviation Organization (ICAO), Aerodrome Design Manual, Part 1: Runways, Doc 9157, 5th ed., Montréal, Canada: ICAO, 2022.
  • [5] National Aeronautics and Space Administration (NASA) and U.S. Geological Survey (USGS), Shuttle Radar Topography Mission (SRTM) - Global 1 Arc-Second Data, 2014-2018. [On-line]. Available: https://www.usgs.gov
  • [6] Republic of Türkiye, General Directorate of Mapping (HGM), Topographic Map Data and Elevation Models (DEM/DTM), Ankara, Türkiye, 2024. [Online]. Available: https://www.hgk.msb.gov.tr
  • [7] QGIS Development Team, QGIS Geographic Information System, Version 3.34, Open Source Geospatial Foundation, 2024. [Online]. Available: https://qgis.org
  • [8] Federal Aviation Administration (FAA), Advisory Circular AC 150/5325-4B - Runway Length Requirements for Airport Design, Washington, D.C.: U.S. Department of Transportation, July 2005. [Online]. Available: https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5325-4B.pdf
  • [9] Blender Foundation, Blender 3D Computer Graphics Software, Version 3.6 LTS, Amsterdam, The Netherlands, 2024. [Online]. Available: https://www.blender.org
  • [10] International Civil Aviation Organization (ICAO), Annex 14 - Aerodromes, Vol. I: Aerodrome Design and Operations, 9th ed., Montréal, Canada: ICAO, July 2022.
  • [11] European Union Aviation Safety Agency (EASA), CS-ADR-DSN - Certification Specifica-tions and Guidance Material for Aerodrome Design, Issue 6, Cologne, Germany: EASA, 2022. [Online]. Available: https://www.easa.europa.eu
  • [12] Ş. Kaya and M. Şahin, “GIS-based multi-criteria analysis for airport site selection in moun-tainous regions,” Journal of Air Transport Management, vol. 105, p. 102308, 2022.
  • [13] X. Zhang, P. Li, and Y. Chen, “Application of 3D terrain models in airport runway planning using high-resolution DEM data,” ISPRS International Journal of Geo-Information, vol. 10, no. 4, p. 245, 2021.
  • [14] S. Hosseini and E. Stefanakis, “Three-dimensional GIS analysis for obstacle limitation sur-faces and approach path evaluation,” Applied Sciences, vol. 13, no. 2, p. 987, 2023.
  • [15] Google LLC, Google Earth Pro, Version 7.3, Mountain View, CA, USA, 2024. [Online]. Available: https://www.google.com/earth/
  • [16] Republic of Türkiye, General Directorate of Mapping (HGM), Topographic Map of Tunceli Province, Ankara, Türkiye, 2025. [Online]. Available: https://www.hgk.msb.gov.tr
  • [17] Boeing Commercial Airplanes, Boeing 737-800 Airplane Characteristics for Airport Plan-ning, Rev. A, Seattle, WA, USA: The Boeing Company, March 2023. [Online]. Available: https://www.boeing.com/commercial/airports
  • [18] Federal Aviation Administration (FAA), Advisory Circular AC 150/5300-13B - Airport De-sign, Change 1, Washington, D.C.: U.S. Department of Transportation, 2022. [Online]. Available: https://www.faa.gov/airports/resources/advisory_circulars

Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province

Yıl 2025, Cilt: 11 Sayı: 2, 616 - 639, 29.12.2025
https://doi.org/10.29132/ijpas.1811059

Öz

This research article addresses the design of an airport runway for the province of Tunceli, which is characterized by a geographically challenging topography. The study highlights the inadequacies of traditional two-dimensional (2D) analyses in complex terrains and proposes a decision support approach based on three-dimensional (3D) modelling. In this context, two alternative sites were evaluated. The first site, assessed using conventional 2D methods, was found unsuitable due to excessive natural slope and significant obstacle penetrations. The second site, analyzed through a 3D environment using Digital Elevation Model (DEM) data in Blender, enabled the volumetric modelling of Obstacle Limitation Surfaces (OLS) and provided a more realistic representation of terrain-obstacle interactions. In this study, the Boeing 737-800 classified under ICAO Code 4C and widely used in Türkiye’s domestic flights, was selected as the reference aircraft for the airport runway design. Considering site-specific altitude and temperature conditions, the required runway length was calculated as 3200 m. The 3D analyses indicated full compliance with approach, takeoff-climb and inner horizontal surface criteria for the north-south orientation. Overall, the results demonstrate that 3D data-driven methods offer a more reliable and precise framework for airport planning in mountainous regions compared with traditional 2D approaches.

Kaynakça

  • [1] Republic of Türkiye, Ministry of Transport and Infrastructure, Airport Planning Principles Guide, Ankara, Türkiye, 2021.
  • [2] Directorate General of Civil Aviation (DGCA / SHGM), Airport Design Criteria Directive (SHT-HTK), Ankara, Türkiye: DGCA Publications, 2020. [Online]. Available: https://www.shgm.gov.tr
  • [3] Directorate General of Civil Aviation (DGCA / SHGM), Obstacle Limitation Surfaces Directive (SHT-Mania Planı), Ankara, Türkiye: DGCA Publications, 2020. [Online]. Available: https://www.shgm.gov.tr
  • [4] International Civil Aviation Organization (ICAO), Aerodrome Design Manual, Part 1: Runways, Doc 9157, 5th ed., Montréal, Canada: ICAO, 2022.
  • [5] National Aeronautics and Space Administration (NASA) and U.S. Geological Survey (USGS), Shuttle Radar Topography Mission (SRTM) - Global 1 Arc-Second Data, 2014-2018. [On-line]. Available: https://www.usgs.gov
  • [6] Republic of Türkiye, General Directorate of Mapping (HGM), Topographic Map Data and Elevation Models (DEM/DTM), Ankara, Türkiye, 2024. [Online]. Available: https://www.hgk.msb.gov.tr
  • [7] QGIS Development Team, QGIS Geographic Information System, Version 3.34, Open Source Geospatial Foundation, 2024. [Online]. Available: https://qgis.org
  • [8] Federal Aviation Administration (FAA), Advisory Circular AC 150/5325-4B - Runway Length Requirements for Airport Design, Washington, D.C.: U.S. Department of Transportation, July 2005. [Online]. Available: https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5325-4B.pdf
  • [9] Blender Foundation, Blender 3D Computer Graphics Software, Version 3.6 LTS, Amsterdam, The Netherlands, 2024. [Online]. Available: https://www.blender.org
  • [10] International Civil Aviation Organization (ICAO), Annex 14 - Aerodromes, Vol. I: Aerodrome Design and Operations, 9th ed., Montréal, Canada: ICAO, July 2022.
  • [11] European Union Aviation Safety Agency (EASA), CS-ADR-DSN - Certification Specifica-tions and Guidance Material for Aerodrome Design, Issue 6, Cologne, Germany: EASA, 2022. [Online]. Available: https://www.easa.europa.eu
  • [12] Ş. Kaya and M. Şahin, “GIS-based multi-criteria analysis for airport site selection in moun-tainous regions,” Journal of Air Transport Management, vol. 105, p. 102308, 2022.
  • [13] X. Zhang, P. Li, and Y. Chen, “Application of 3D terrain models in airport runway planning using high-resolution DEM data,” ISPRS International Journal of Geo-Information, vol. 10, no. 4, p. 245, 2021.
  • [14] S. Hosseini and E. Stefanakis, “Three-dimensional GIS analysis for obstacle limitation sur-faces and approach path evaluation,” Applied Sciences, vol. 13, no. 2, p. 987, 2023.
  • [15] Google LLC, Google Earth Pro, Version 7.3, Mountain View, CA, USA, 2024. [Online]. Available: https://www.google.com/earth/
  • [16] Republic of Türkiye, General Directorate of Mapping (HGM), Topographic Map of Tunceli Province, Ankara, Türkiye, 2025. [Online]. Available: https://www.hgk.msb.gov.tr
  • [17] Boeing Commercial Airplanes, Boeing 737-800 Airplane Characteristics for Airport Plan-ning, Rev. A, Seattle, WA, USA: The Boeing Company, March 2023. [Online]. Available: https://www.boeing.com/commercial/airports
  • [18] Federal Aviation Administration (FAA), Advisory Circular AC 150/5300-13B - Airport De-sign, Change 1, Washington, D.C.: U.S. Department of Transportation, 2022. [Online]. Available: https://www.faa.gov/airports/resources/advisory_circulars
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ulaştırma Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Recep Hadin Kaçmaz 0000-0002-8913-4368

Selim Cemalgil 0000-0001-6475-3632

Gönderilme Tarihi 26 Ekim 2025
Kabul Tarihi 28 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Kaçmaz, R. H., & Cemalgil, S. (2025). Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province. International Journal of Pure and Applied Sciences, 11(2), 616-639. https://doi.org/10.29132/ijpas.1811059
AMA Kaçmaz RH, Cemalgil S. Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province. International Journal of Pure and Applied Sciences. Aralık 2025;11(2):616-639. doi:10.29132/ijpas.1811059
Chicago Kaçmaz, Recep Hadin, ve Selim Cemalgil. “Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province”. International Journal of Pure and Applied Sciences 11, sy. 2 (Aralık 2025): 616-39. https://doi.org/10.29132/ijpas.1811059.
EndNote Kaçmaz RH, Cemalgil S (01 Aralık 2025) Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province. International Journal of Pure and Applied Sciences 11 2 616–639.
IEEE R. H. Kaçmaz ve S. Cemalgil, “Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province”, International Journal of Pure and Applied Sciences, c. 11, sy. 2, ss. 616–639, 2025, doi: 10.29132/ijpas.1811059.
ISNAD Kaçmaz, Recep Hadin - Cemalgil, Selim. “Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province”. International Journal of Pure and Applied Sciences 11/2 (Aralık2025), 616-639. https://doi.org/10.29132/ijpas.1811059.
JAMA Kaçmaz RH, Cemalgil S. Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province. International Journal of Pure and Applied Sciences. 2025;11:616–639.
MLA Kaçmaz, Recep Hadin ve Selim Cemalgil. “Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province”. International Journal of Pure and Applied Sciences, c. 11, sy. 2, 2025, ss. 616-39, doi:10.29132/ijpas.1811059.
Vancouver Kaçmaz RH, Cemalgil S. Three-Dimensional (3D) Airport Runway Design Model for Tunceli Province. International Journal of Pure and Applied Sciences. 2025;11(2):616-39.