Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Carbon Dioxide Storage Potential of Orhaneli Ophiolite: Experimental Findings

Yıl 2022, Cilt: 8 Sayı: 1, 204 - 216, 30.06.2022
https://doi.org/10.29132/ijpas.1098481

Öz

In our age, innovative solutions are needed to reduce carbon emissions to combat climate and ecology crises. Pioneering studies in the last 30 years have shown that carbonate minerals, which theoretically form as a natural result of atmosphere-lithosphere interaction processes, have great potential for permanent disposal of atmospheric carbon dioxide. However, there is a need for local studies in order to make approaches about which rock types and under which conditions secondary carbonation can be performed most effectively for applications of geological removal of atmospheric carbon dioxide.
Turkey, located in the Alpine-Himalayan orogenic belt, has widely distributed ophiolitic series and accretionary complexes that contain mafic-ultramafic lithologies representing the remnants of Tethys ocean(s). The Orhaneli ophiolite around Bursa, NW Anatolia, comprises of the characteristic lithologies for ophilitic series such as dunite, harzburgite, clinopyroxenite, gabbro and serpantinites as well as various size of schist and limestone blocks with radiolorite chert and tuffs. Dunite samples, exhibiting different weathering profiles and alteration degrees, have a general mineralogical composition of olivine, orthopyroxene, magnetite, serpentine, talc, spinel and clay minerals. Within the scope of this study, batch reactor experiments were carried out on samples collected from the Orhaneli (Bursa) ophiolitic rocks to assess their potential in CO2 trapping . Dunite samples were preparad as dual sets of clastic and block for reaction experiments with two different acid solutions: pH2-pH4. Mineralogical, petrographic, micromorphological and chemical findings from the experimental samples revealed the development of alteration zones covering surfaces of clast and blocks and discontinues dominated by Mg- and Fe-carbonate minerals. The findings indicate that the dunite lithologies of Orhaneli ophiolite may exhibit a high potential for CO2 storage in field scale.

Proje Numarası

-

Kaynakça

  • Agrawal, A. K., Mehra, A. (2020). Dunite carbonation in batch-tubular reactor, Environmental Science and Pollution Research, 1-7 31439-31445.
  • Akbulut, M. (2018). Investigation of silicate micro-inclusions from Orhaneli and Harmancik chromitites (NW Turkey): New ultrahigh-pressure evidence from Western Tethyan ophiolitic chromitites. Ofioliti, 43(1), 1-22.
  • DePaolo, D. J., Cole, D. R. (2013). Geochemistry of geologic carbon sequestration: an overview, Reviews in Mineralogy and Geochemistry, 77(1), 1-14.
  • Elidemir, S., Güleç, N. (2018). Geochemical characterization of geothermal systems in western Anatolia (Turkey): implications for CO2 trapping mechanisms in prospective CO2‐EGS sites, Greenhouse Gases: Science and Technology, 8(1), 63-76.
  • Harris, N. B., Kelley, S., & Okay, A. I. (1994). Post-collision magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology, 117(3), 241-252.
  • Gadikota, G. (2021). Carbon mineralization pathways for carbon capture, storage and utilization, Communications Chemistry, 4(1), 1-5.
  • Gabrielli, P., Gazzani, M., & Mazzotti, M. (2020). The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. Industrial & Engineering Chemistry Research, 59(15), 7033-7045.
  • Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Doelman, J. C., Van Vuuren, D. P., & Huijbregts, M. A. J. (2020). The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 10(11), 1023-1029.
  • Haszeldine, R. S., Flude, S., Johnson, G., & Scott, V. (2018). Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160447.
  • IEA (2022), Global Energy Review: CO2 Emissions in 2021, IEA, Paris https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2.
  • Kelemen, P. B., Matter, J. (2008). In situ carbonation of peridotite for CO2 storage, Proceedings of the National Academy of Sciences, 105(45), 17295-17300.
  • Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., Blusztajn, J. (2011). Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage, Annual Review of Earth and Planetary Sciences, 39, 545-576.
  • Kelemen, P. B., McQueen, N., Wilcox, J., Renforth, P., Dipple, G., Vankeuren, A. P. (2020). Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights, Chemical Geology, 550, 119628.
  • Ketin, İ. (1966). Anadolu’nun tektonik birlikleri. Maden Tetkik ve Arama Dergisi, 66(20).
  • Ketzer J.M., Iglesias R.S., Einloft S. (2012). Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage, In: Chen WY., Seiner J., Suzuki T., Lackner M. (eds) Handbook of Climate Change Mitigation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7991-9_37
  • Kwak, J. H., Hu, J. Z., Hoyt, D. W., Sears, J. A., Wang, C., Rosso, K. M., Felmy, A. R. (2010). Metal carbonation of forsterite in supercritical CO2 and H2O using solid state 29Si, 13C NMR spectroscopy, The Journal of Physical Chemistry C, 114(9), 4126-4134.
  • Metz, B., Davidson, O., De Coninck, H. (Eds.). (2005). Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change, Cambridge University Press.
  • Park, A. H. A., Fan, L. S. (2004). CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process, Chemical Engineering Science, 59(22-23), 5241-5247.
  • Pires, J. C. M., Martins, F. G., Alvim-Ferraz, M. C. M., & Simões, M. (2011). Recent developments on carbon capture and storage: an overview. Chemical engineering research and design, 89(9), 1446-1460.
  • Robertson, A. H. (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2), 1-67.
  • Sarifakioğlu, E., Özen, H., Winchester, J. A. (2009). Whole rock and mineral chemistry of ultramafic-mafic cumulates from the Orhaneli (Bursa) ophiolite, NW Anatolia. Turkish Journal of Earth Sciences, 18(1), 55-83.
  • Uysal, I., Akmaz, R. M., Kapsiotis, A., Demir, Y., Saka, S., Aycı, E., & Mueller, D. (2015). Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancık ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data. Ore Geology Reviews, 65, 26-41.
  • Ündül, Ö., ve Tuğrul, A. (2012). The influence of weathering on the engineering properties of dunites. Rock Mechanics and Rock Engineering, 45(2), 225-239.

Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular

Yıl 2022, Cilt: 8 Sayı: 1, 204 - 216, 30.06.2022
https://doi.org/10.29132/ijpas.1098481

Öz

Çağımızda iklim ve ekoloji krizleri ile mücadele etmek için karbon emisyonlarının azaltılması adına yenilikçi çözümlere ihtiyaç duyulmaktadır. Son 30 yıllık dönemde gerçekleştirilen öncü teorik çalışmalar, atmosfer-litosfer etkileşim süreçlerinin doğal bir sonucu olarak oluşan karbonat minerallerinin, atmosferik karbondioksitin kalıcı bertarafı bakımından büyük potansiyel taşıdığını göstermiştir. Bununla birlikte, atmosferik karbondioksitin jeolojik bertarafını hedefleyen yerel uygulamaların başarıyla gerçekleştirilmesi için, başta karbonatlaşmanın hangi kaya türlerinde ve hangi koşullarda en etkili biçimde gerçekleştirilebileceğine dair yaklaşımlarda bulunmak adına literatürdeki pek çok eksiliğin giderilmesine ihtiyaç vardır.
Alp-Himalaya orojenik kuşağında yer alan Türkiye, Tetis okyasnusun kalıntılarını temsil eden ofiyolit ve ofiyolitik yığışım karmaşaları bakımından oldukça zengin bir coğrafyadır. Kuzeybatı Anadolu’da Bursa-Orhaneli civarında geniş alanlarda gözlenen Orhaneli ofiyoliti tipik bir ofiyolit istifinin bazik-ultrabazik litolojilerini oluşturan dünit, harzburjit, klinopiroksenit, gabro ve serpantinlerin yanısıra, değişik boyutlarda kireçtaşı ve şist blokları ile radyolarit ve tüflerden meydana gelir. Mostra ölçeğinde çeşitli ayrışma profilleri ve alterasyon dereceleri sergileyen dünit başlıca olivin + ortopiroksen, magnetit, serpantin, talk, spinel ve kil minerallerinden oluşmaktadır. Bu çalışma kapsamında, Orhaneli ofiyoliti dünitlerinden derlenen numuneler üzerinde kesikli reaktör düzeneğinde, CO2 tutma pontasiyellerinin belirlenmesi amacıyla reaksiyon deneylerine tâbi tutulmuşlardır. Kırıntılı ve blok olarak hazırlanan dünit örneklerinde farklı pH2-pH4 ‘ya sahip asit çözeltileri ilave edilerek bu çözeltilerden karbondioksit gazı geçirilmiştir. Deney örnekleriden yapılan mineralojik, petrografik, mikromorfolojik ve kimyasal analizler, numune yüzeyleri ile mikro süreksizlikler boyunca şiddetli alterasyon zonlarının gelişimi ve bu zonlarda manyezit ve siderit gibi Mg- ve Fe- karbonat minerallerinin kristallendiğini ortaya koymuştur. Elde edilen bulgular, Orhaneli ofiyolitinin mostra ölçeğinde CO2 saklama potansiyelinin olabileceği ortaya koymaktadır.

Destekleyen Kurum

-

Proje Numarası

-

Kaynakça

  • Agrawal, A. K., Mehra, A. (2020). Dunite carbonation in batch-tubular reactor, Environmental Science and Pollution Research, 1-7 31439-31445.
  • Akbulut, M. (2018). Investigation of silicate micro-inclusions from Orhaneli and Harmancik chromitites (NW Turkey): New ultrahigh-pressure evidence from Western Tethyan ophiolitic chromitites. Ofioliti, 43(1), 1-22.
  • DePaolo, D. J., Cole, D. R. (2013). Geochemistry of geologic carbon sequestration: an overview, Reviews in Mineralogy and Geochemistry, 77(1), 1-14.
  • Elidemir, S., Güleç, N. (2018). Geochemical characterization of geothermal systems in western Anatolia (Turkey): implications for CO2 trapping mechanisms in prospective CO2‐EGS sites, Greenhouse Gases: Science and Technology, 8(1), 63-76.
  • Harris, N. B., Kelley, S., & Okay, A. I. (1994). Post-collision magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology, 117(3), 241-252.
  • Gadikota, G. (2021). Carbon mineralization pathways for carbon capture, storage and utilization, Communications Chemistry, 4(1), 1-5.
  • Gabrielli, P., Gazzani, M., & Mazzotti, M. (2020). The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. Industrial & Engineering Chemistry Research, 59(15), 7033-7045.
  • Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Doelman, J. C., Van Vuuren, D. P., & Huijbregts, M. A. J. (2020). The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 10(11), 1023-1029.
  • Haszeldine, R. S., Flude, S., Johnson, G., & Scott, V. (2018). Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160447.
  • IEA (2022), Global Energy Review: CO2 Emissions in 2021, IEA, Paris https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2.
  • Kelemen, P. B., Matter, J. (2008). In situ carbonation of peridotite for CO2 storage, Proceedings of the National Academy of Sciences, 105(45), 17295-17300.
  • Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., Blusztajn, J. (2011). Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage, Annual Review of Earth and Planetary Sciences, 39, 545-576.
  • Kelemen, P. B., McQueen, N., Wilcox, J., Renforth, P., Dipple, G., Vankeuren, A. P. (2020). Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights, Chemical Geology, 550, 119628.
  • Ketin, İ. (1966). Anadolu’nun tektonik birlikleri. Maden Tetkik ve Arama Dergisi, 66(20).
  • Ketzer J.M., Iglesias R.S., Einloft S. (2012). Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage, In: Chen WY., Seiner J., Suzuki T., Lackner M. (eds) Handbook of Climate Change Mitigation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7991-9_37
  • Kwak, J. H., Hu, J. Z., Hoyt, D. W., Sears, J. A., Wang, C., Rosso, K. M., Felmy, A. R. (2010). Metal carbonation of forsterite in supercritical CO2 and H2O using solid state 29Si, 13C NMR spectroscopy, The Journal of Physical Chemistry C, 114(9), 4126-4134.
  • Metz, B., Davidson, O., De Coninck, H. (Eds.). (2005). Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change, Cambridge University Press.
  • Park, A. H. A., Fan, L. S. (2004). CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process, Chemical Engineering Science, 59(22-23), 5241-5247.
  • Pires, J. C. M., Martins, F. G., Alvim-Ferraz, M. C. M., & Simões, M. (2011). Recent developments on carbon capture and storage: an overview. Chemical engineering research and design, 89(9), 1446-1460.
  • Robertson, A. H. (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2), 1-67.
  • Sarifakioğlu, E., Özen, H., Winchester, J. A. (2009). Whole rock and mineral chemistry of ultramafic-mafic cumulates from the Orhaneli (Bursa) ophiolite, NW Anatolia. Turkish Journal of Earth Sciences, 18(1), 55-83.
  • Uysal, I., Akmaz, R. M., Kapsiotis, A., Demir, Y., Saka, S., Aycı, E., & Mueller, D. (2015). Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancık ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data. Ore Geology Reviews, 65, 26-41.
  • Ündül, Ö., ve Tuğrul, A. (2012). The influence of weathering on the engineering properties of dunites. Rock Mechanics and Rock Engineering, 45(2), 225-239.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hatice Ercan 0000-0002-2819-0454

Gönenç Göçmengil 0000-0002-1955-8026

Fatma Gülmez 0000-0003-1835-0036

Mustafa Topkafa 0000-0001-7016-798X

Ömer Ündül 0000-0002-7048-9759

Proje Numarası -
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 5 Nisan 2022
Kabul Tarihi 26 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 1

Kaynak Göster

APA Ercan, H., Göçmengil, G., Gülmez, F., Topkafa, M., vd. (2022). Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular. International Journal of Pure and Applied Sciences, 8(1), 204-216. https://doi.org/10.29132/ijpas.1098481
AMA Ercan H, Göçmengil G, Gülmez F, Topkafa M, Ündül Ö. Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular. International Journal of Pure and Applied Sciences. Haziran 2022;8(1):204-216. doi:10.29132/ijpas.1098481
Chicago Ercan, Hatice, Gönenç Göçmengil, Fatma Gülmez, Mustafa Topkafa, ve Ömer Ündül. “Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular”. International Journal of Pure and Applied Sciences 8, sy. 1 (Haziran 2022): 204-16. https://doi.org/10.29132/ijpas.1098481.
EndNote Ercan H, Göçmengil G, Gülmez F, Topkafa M, Ündül Ö (01 Haziran 2022) Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular. International Journal of Pure and Applied Sciences 8 1 204–216.
IEEE H. Ercan, G. Göçmengil, F. Gülmez, M. Topkafa, ve Ö. Ündül, “Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular”, International Journal of Pure and Applied Sciences, c. 8, sy. 1, ss. 204–216, 2022, doi: 10.29132/ijpas.1098481.
ISNAD Ercan, Hatice vd. “Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular”. International Journal of Pure and Applied Sciences 8/1 (Haziran 2022), 204-216. https://doi.org/10.29132/ijpas.1098481.
JAMA Ercan H, Göçmengil G, Gülmez F, Topkafa M, Ündül Ö. Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular. International Journal of Pure and Applied Sciences. 2022;8:204–216.
MLA Ercan, Hatice vd. “Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular”. International Journal of Pure and Applied Sciences, c. 8, sy. 1, 2022, ss. 204-16, doi:10.29132/ijpas.1098481.
Vancouver Ercan H, Göçmengil G, Gülmez F, Topkafa M, Ündül Ö. Orhaneli Ofiyolitinin Karbondioksit Saklama Potansiyelinin Araştırılması: Deneysel Bulgular. International Journal of Pure and Applied Sciences. 2022;8(1):204-16.

154501544915448154471544615445