Derleme
BibTex RIS Kaynak Göster

Epigenetics and Pregnancy

Yıl 2024, , 161 - 165, 30.01.2024
https://doi.org/10.61399/ikcusbfd.1310676

Öz

Pregnancy is a critical time for the healthy development of the embryo and fetus, and environmental factors may affect this process. In recent years, there has been a growing interest in the role of epigenetic mechanisms in the pregnancy process. Epigenetic changes are non-hereditary changes in gene expression and can produce lasting effects without any change in genetic material. During pregnancy, epigenetic mechanisms influence gene expression, directing processes such as cell differentiation, organ development, and fetal programming. A better understanding of how these mechanisms interact and their effects during pregnancy is important for more effective pregnancy follow-up and healthy pregnancy outcomes in the future. With the advancement of epigenetic research, understanding and monitoring epigenetic changes during pregnancy may be an important step in optimizing healthy pregnancy outcomes. Midwives should follow the current literature and understand the epigenetic mechanisms that have an important role in improving the health of women and newborns, and integrate them into midwifery care. The aim of this review is to examine the effects of epigenetic mechanisms during pregnancy, and to summarize the causes and consequences of epigenetic changes.

Kaynakça

  • Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol. 2022; 127, 121–132. DOI: 10.1016/j.semcdb.2021.08.006.
  • Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022; 23(6), 325–341. DOI: 10.1038/ s41576-021-00438-5.
  • Eser BE, Yazgan ÜC, Gürses SA, Aydın M. Diabetes mellitus ve epigenetik mekanizmalar. Dicle Tıp Dergisi. 2016; 43 (2), 375-382.
  • Bošković A, Rando OJ. Transgenerational epigenetic inheritance. Annu Rev Genet. 2018; 52, 21–41. DOI: 10.1146/annurev-genet-120417-031404.
  • Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: From phenomena to molecular mechanisms. Curr Opin Neurobiol. 2019; 59, 189–206. DOI:10.1016/j.conb.2019.09.012.
  • Xavier MJ, Roman SD, Aitken RJ, Nixon, B. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update. 2019; 25(5), 518–540. DOI: 10.1093/ humupd/dmz017.
  • Dłuski DF, Wolińska E, Skrzypczak M. Epigenetic changes in gestational diabetes mellitus. Int J Mol Sci. 2021; 22(14), 7649. DOI:10.3390/ ijms22147649.
  • Arslan S, Yıldıran H. Maternal beslenmenin yavrular üzerine etkileri: Fetal programlama ve epigenetik mekanizmalar. Bes Diy Derg. 2021; 49(1), 67–74. DOI:10.33076/2021.BDD.1437.
  • Sapienza C, Issa JP. Diet, nutrition, and cancer epigenetics. Annu Rev Nutr. 2016; 17(36), 665-81. DOI:10.1146/annurev-nutr-121415-112634.
  • Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med. 2013; 34(4), 753-64. DOI: 10.1016/j. mam.2012.07.018.
  • Barua S, Junaid MA. Lifestyle, pregnancy and epigenetic effects. Epigenomics. 2015; 7(1), 85–102. DOI: 10.2217/epi.14.71.
  • Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation of human placental function and pregnancy outcome: Considerations for causal inference. Am J Obstet Gynecol. 2015; 213(4 Suppl), S182–S196. DOI:10.1016/j.ajog.2015.07.011.
  • Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta. 2017; 52, 127–133. DOI:10.1016/j.placenta.2016.12.026.
  • Durbagula S, Korlimarla A, Ravikumar G, Valiya Parambath S, Kaku SM, Visweswariah AM. Prenatal epigenetic factors are predisposing for neurodevelopmental disorders-considering placenta as a model. Birth Defects Res. 2022; 114(20), 1324–1342. DOI: 10.1002/bdr2.2119.
  • Freire BL, Homma TK, Lerario AM, Seo GH, Han H, de Assis Funari MF, et al. High frequency of genetic/epigenetic disorders in short stature children born with very low birth weight. Am J Med Genet A. 2022; 188(9), 2599– 2604. DOI:10.1002/ajmg.a.62892.
  • Shepherd R, Cheung AS, Pang K, Saffery R, Novakovic B. Sexual dimorphism in innate immunity: The role of sex hormones and epigenetics. Front Immunol. 2021; 11, 604000. DOI:10.3389/fimmu.2020.604000.
  • Valencia-Ortega J, Saucedo R., Sánchez-Rodríguez MA, Cruz-Durán JG, Martínez EGR. Epigenetic alterations related to gestational diabetes mellitus. Int J Mol Sci. 2021; 22(17), 9462. DOI:10.3390/ijms22179462.
  • Kimmel M, Clive M, Gispen F, Guintivano J, Brown T, Cox O, et al. Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology. 2016; 69, 150–160. DOI:10.1016/j. psyneuen.2016.04.008.
  • Chen Z, Meima ME, Peeters RP, Visser WE. Thyroid hormone transporters in pregnancy and fetal development. Int J Mol Sci. 2022; 23(23), 15113. DOI:10.3390/ijms232315113.
  • Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021; 17(9), 564–579. DOI:10.1038/s41582-021-00530-8.
  • Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res. 2022; 91(2), 297–327. DOI:10.1038/s41390- 021-01630-3.
  • Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: Consequences in mother and child. Epigenetics. 2019, 14(3), 215–235. DOI:10.1080/15592294.2019.1582277.
  • Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci. 2018; 55(2), 71–101. DOI:10.10 80/10408363.2017.1422109.
  • Campisano S, La Colla A, Echarte SM, Chisari AN. Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev. 2019; 32(1), 128–145. DOI:10.1017/ S0954422418000239.
  • Garcia-Beltran C, Carreras-Badosa G, Bassols J, Malpique R, Plou C, de Zegher F, et al. MicroRNAs in newborns with low birth weight: relation to birth size and body composition. Pediatr Res. 2022; 92(3), 829–837. DOI:10.1038/s41390-021-01845-4.
  • Ross KM, Carroll JE, Horvath S, Hobel CJ, Coussons-Read ME, Dunkel Schetter C. Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight. Clin Epigenetics. 2020; 12(1), 120. DOI:10.1186/s13148-020-00909-2.
  • Spada E, Calzari L, Corsaro L, Fazia T, Mencarelli M, Di Blasio AM, et al. Epigenome wide association and stochastic epigenetic mutation analysis on cord blood of preterm birth. Int J Mol Sci. 2020; 21(14), 5044. DOI:10.3390/ ijms21145044.
  • Knight AK, Smith AK. Epigenetic biomarkers of preterm birth and its risk factors. Genes (Basel). 2016; 7(4), 15. DOI:10.3390/genes7040015.
  • Park B, Khanam R, Vinayachandran V, Baqui AH, London SJ, Biswal S. Epigenetic biomarkers and preterm birth. Environ Epigenet. 2020 6(1), dvaa005. DOI:10.1093/eep/dvaa005.
  • Fitzgerald E, Boardman JP, Drake AJ. Preterm birth and the risk of neurodevelopmental disorders - Is there a role for epigenetic dysregulation? Curr Genomics. 2018; 19(7), 507–521. DOI:10.2174/1389202919666171229 144807.
  • Bianchi ME, Restrepo JM. Low birthweight as a risk factor for non-communicable diseases in adults. Front Med (Lausanne). 2022; 8, 793990. DOI:10.3389/fmed.2021.793990.
  • Di Costanzo M, De Paulis N, Capra ME, Biasucci G. Nutrition during pregnancy and lactation: Epigenetic effects on infants' immune system in food allergy. Nutrients. 2022; 14(9), 1766. DOI:10.3390/nu14091766.
  • Ashraf UM, Hall DL, Rawls AZ, Alexander BT. Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond). 2021; 135(19), 2307–2327. DOI:10.1042/CS20190070.
  • Rutten BP, Mill J. Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr Bull. 2009; 35(6), 1045–1056. DOI: 10.1093/schbul/sbp104.
  • Waye MMY, Cheng HY. Genetics and epigenetics of autism: A review. Psychiatry Clin Neurosci. 2018; 72(4), 228–244. DOI:10.1111/pcn.12606.
  • Osborne L, Clive M, Kimmel M, Gispen F, Guintivano J, Brown T, et al. Replication of epigenetic postpartum depression biomarkers and variation with hormone levels. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2016; 41(6), 1648–1658. DOI:10.1038/npp.2015.333.
  • Elwood J, Murray E, Bell A, Sinclair M, Kernohan WG, Stockdale JA. A systematic review investigating if genetic or epigenetic markers are associated with postnatal depression. J Affect Disord. 2019; 253, 51–62. DOI:10.1016/j.jad.2019.04.059.
  • Luo F, Zhu Z, Du Y, Chen L, Cheng Y. Risk factors for postpartum depression based on genetic and epigenetic interactions. Mol Neurobiol. 2023; 60(7), 3979–4003. DOI:10.1007/s12035-023-03313-y.
  • Anway MD, Cupp AS, Uzumcu M, Skinner M K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005; 308(5727), 1466–1469. DOI:10.1126/science.1108190.
  • Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature. 2020; 585(7824), 277–282. DOI:10.1038/s41586-020-2682-1.
  • Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: An interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res. 2021; 70(1), 29–49. DOI:10.1007/s00011-020-01425-y.
  • Coker SJ, Smith-Díaz CC, Dyson RM, Vissers MCM, Berry MJ. The epigenetic role of vitamin C in neurodevelopment. Int J Mol Sci. 2022; 23(3), 1208. DOI:10.3390/ijms23031208.
  • Cao R, Xie J, Zhang L. Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sci. 2022; 17(1), 1679–1688. DOI:10.1515/biol-2022-0504.
  • Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014; 5, 3746. DOI:10.1038/ ncomms4746.
  • Menezo Y, Elder K, Clement A, Clement P. Folic acid, folinic acid, 5 methyl tetrahydrofolate supplementation for mutations that affect epigenesis through the folate and one-carbon cycles. Biomolecules. 2022; 12(2), 197. DOI:10.3390/biom12020197.
  • Ondičová M, Irwin RE, Thursby SJ, Hilman L, Caffrey A, Cassidy T, et al. Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms. Clin Epigenetics. 2022; 14(1), 63. DOI:10.1186/s13148-022-01282-y.

Epigenetik ve Gebelik

Yıl 2024, , 161 - 165, 30.01.2024
https://doi.org/10.61399/ikcusbfd.1310676

Öz

Gebelik dönemi embriyo ve fetüsün sağlıklı gelişimi için kritik bir zaman dilimidir ve çevresel etmenler bu süreci etkileyebilir. Son yıllarda, epigenetik mekanizmaların gebelik sürecindeki rolü üzerine giderek artan bir ilgi vardır. Epigenetik değişiklikler, gen ifadesindeki kalıtsal olmayan değişikliklerdir ve genetik materyalde herhangi bir değişiklik olmadan kalıcı etkiler yaratabilir. Gebelik sırasında, epigenetik mekanizmalar gen ifadesini etkileyerek hücre farklılaşması, organ gelişimi ve fetal programlama gibi süreçleri yönlendirir. Bu mekanizmaların nasıl etkileşim halinde olduğunu ve gebelik sürecindeki etkilerini daha iyi anlamak, gelecekte daha etkili gebelik takibi ve sağlıklı gebelik sonuçlarının elde edilmesi açısından önemlidir. Epigenetik araştırmaların ilerlemesiyle, gebelik dönemindeki epigenetik değişikliklerin anlaşılması ve takibi, sağlıklı gebelik sonuçlarının optimize edilmesinde önemli bir adım olabilir. Ebelerin güncel literatürü takip ederek kadın ve yenidoğan sağlığının yükseltilmesinde önemli rolü olan epigenetik mekanizmaları anlamaları ve ebelik bakımlarına entegre etmeleri gerekmektedir. Bu derlemenin amacı, epigenetik mekanizmaların gebelik sürecindeki etkilerini incelemek ve epigenetik değişikliklerin nedenlerini ve sonuçlarını özetlemektir.

Kaynakça

  • Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol. 2022; 127, 121–132. DOI: 10.1016/j.semcdb.2021.08.006.
  • Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022; 23(6), 325–341. DOI: 10.1038/ s41576-021-00438-5.
  • Eser BE, Yazgan ÜC, Gürses SA, Aydın M. Diabetes mellitus ve epigenetik mekanizmalar. Dicle Tıp Dergisi. 2016; 43 (2), 375-382.
  • Bošković A, Rando OJ. Transgenerational epigenetic inheritance. Annu Rev Genet. 2018; 52, 21–41. DOI: 10.1146/annurev-genet-120417-031404.
  • Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: From phenomena to molecular mechanisms. Curr Opin Neurobiol. 2019; 59, 189–206. DOI:10.1016/j.conb.2019.09.012.
  • Xavier MJ, Roman SD, Aitken RJ, Nixon, B. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update. 2019; 25(5), 518–540. DOI: 10.1093/ humupd/dmz017.
  • Dłuski DF, Wolińska E, Skrzypczak M. Epigenetic changes in gestational diabetes mellitus. Int J Mol Sci. 2021; 22(14), 7649. DOI:10.3390/ ijms22147649.
  • Arslan S, Yıldıran H. Maternal beslenmenin yavrular üzerine etkileri: Fetal programlama ve epigenetik mekanizmalar. Bes Diy Derg. 2021; 49(1), 67–74. DOI:10.33076/2021.BDD.1437.
  • Sapienza C, Issa JP. Diet, nutrition, and cancer epigenetics. Annu Rev Nutr. 2016; 17(36), 665-81. DOI:10.1146/annurev-nutr-121415-112634.
  • Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med. 2013; 34(4), 753-64. DOI: 10.1016/j. mam.2012.07.018.
  • Barua S, Junaid MA. Lifestyle, pregnancy and epigenetic effects. Epigenomics. 2015; 7(1), 85–102. DOI: 10.2217/epi.14.71.
  • Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation of human placental function and pregnancy outcome: Considerations for causal inference. Am J Obstet Gynecol. 2015; 213(4 Suppl), S182–S196. DOI:10.1016/j.ajog.2015.07.011.
  • Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta. 2017; 52, 127–133. DOI:10.1016/j.placenta.2016.12.026.
  • Durbagula S, Korlimarla A, Ravikumar G, Valiya Parambath S, Kaku SM, Visweswariah AM. Prenatal epigenetic factors are predisposing for neurodevelopmental disorders-considering placenta as a model. Birth Defects Res. 2022; 114(20), 1324–1342. DOI: 10.1002/bdr2.2119.
  • Freire BL, Homma TK, Lerario AM, Seo GH, Han H, de Assis Funari MF, et al. High frequency of genetic/epigenetic disorders in short stature children born with very low birth weight. Am J Med Genet A. 2022; 188(9), 2599– 2604. DOI:10.1002/ajmg.a.62892.
  • Shepherd R, Cheung AS, Pang K, Saffery R, Novakovic B. Sexual dimorphism in innate immunity: The role of sex hormones and epigenetics. Front Immunol. 2021; 11, 604000. DOI:10.3389/fimmu.2020.604000.
  • Valencia-Ortega J, Saucedo R., Sánchez-Rodríguez MA, Cruz-Durán JG, Martínez EGR. Epigenetic alterations related to gestational diabetes mellitus. Int J Mol Sci. 2021; 22(17), 9462. DOI:10.3390/ijms22179462.
  • Kimmel M, Clive M, Gispen F, Guintivano J, Brown T, Cox O, et al. Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology. 2016; 69, 150–160. DOI:10.1016/j. psyneuen.2016.04.008.
  • Chen Z, Meima ME, Peeters RP, Visser WE. Thyroid hormone transporters in pregnancy and fetal development. Int J Mol Sci. 2022; 23(23), 15113. DOI:10.3390/ijms232315113.
  • Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021; 17(9), 564–579. DOI:10.1038/s41582-021-00530-8.
  • Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res. 2022; 91(2), 297–327. DOI:10.1038/s41390- 021-01630-3.
  • Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: Consequences in mother and child. Epigenetics. 2019, 14(3), 215–235. DOI:10.1080/15592294.2019.1582277.
  • Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci. 2018; 55(2), 71–101. DOI:10.10 80/10408363.2017.1422109.
  • Campisano S, La Colla A, Echarte SM, Chisari AN. Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev. 2019; 32(1), 128–145. DOI:10.1017/ S0954422418000239.
  • Garcia-Beltran C, Carreras-Badosa G, Bassols J, Malpique R, Plou C, de Zegher F, et al. MicroRNAs in newborns with low birth weight: relation to birth size and body composition. Pediatr Res. 2022; 92(3), 829–837. DOI:10.1038/s41390-021-01845-4.
  • Ross KM, Carroll JE, Horvath S, Hobel CJ, Coussons-Read ME, Dunkel Schetter C. Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight. Clin Epigenetics. 2020; 12(1), 120. DOI:10.1186/s13148-020-00909-2.
  • Spada E, Calzari L, Corsaro L, Fazia T, Mencarelli M, Di Blasio AM, et al. Epigenome wide association and stochastic epigenetic mutation analysis on cord blood of preterm birth. Int J Mol Sci. 2020; 21(14), 5044. DOI:10.3390/ ijms21145044.
  • Knight AK, Smith AK. Epigenetic biomarkers of preterm birth and its risk factors. Genes (Basel). 2016; 7(4), 15. DOI:10.3390/genes7040015.
  • Park B, Khanam R, Vinayachandran V, Baqui AH, London SJ, Biswal S. Epigenetic biomarkers and preterm birth. Environ Epigenet. 2020 6(1), dvaa005. DOI:10.1093/eep/dvaa005.
  • Fitzgerald E, Boardman JP, Drake AJ. Preterm birth and the risk of neurodevelopmental disorders - Is there a role for epigenetic dysregulation? Curr Genomics. 2018; 19(7), 507–521. DOI:10.2174/1389202919666171229 144807.
  • Bianchi ME, Restrepo JM. Low birthweight as a risk factor for non-communicable diseases in adults. Front Med (Lausanne). 2022; 8, 793990. DOI:10.3389/fmed.2021.793990.
  • Di Costanzo M, De Paulis N, Capra ME, Biasucci G. Nutrition during pregnancy and lactation: Epigenetic effects on infants' immune system in food allergy. Nutrients. 2022; 14(9), 1766. DOI:10.3390/nu14091766.
  • Ashraf UM, Hall DL, Rawls AZ, Alexander BT. Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond). 2021; 135(19), 2307–2327. DOI:10.1042/CS20190070.
  • Rutten BP, Mill J. Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr Bull. 2009; 35(6), 1045–1056. DOI: 10.1093/schbul/sbp104.
  • Waye MMY, Cheng HY. Genetics and epigenetics of autism: A review. Psychiatry Clin Neurosci. 2018; 72(4), 228–244. DOI:10.1111/pcn.12606.
  • Osborne L, Clive M, Kimmel M, Gispen F, Guintivano J, Brown T, et al. Replication of epigenetic postpartum depression biomarkers and variation with hormone levels. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2016; 41(6), 1648–1658. DOI:10.1038/npp.2015.333.
  • Elwood J, Murray E, Bell A, Sinclair M, Kernohan WG, Stockdale JA. A systematic review investigating if genetic or epigenetic markers are associated with postnatal depression. J Affect Disord. 2019; 253, 51–62. DOI:10.1016/j.jad.2019.04.059.
  • Luo F, Zhu Z, Du Y, Chen L, Cheng Y. Risk factors for postpartum depression based on genetic and epigenetic interactions. Mol Neurobiol. 2023; 60(7), 3979–4003. DOI:10.1007/s12035-023-03313-y.
  • Anway MD, Cupp AS, Uzumcu M, Skinner M K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005; 308(5727), 1466–1469. DOI:10.1126/science.1108190.
  • Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature. 2020; 585(7824), 277–282. DOI:10.1038/s41586-020-2682-1.
  • Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: An interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res. 2021; 70(1), 29–49. DOI:10.1007/s00011-020-01425-y.
  • Coker SJ, Smith-Díaz CC, Dyson RM, Vissers MCM, Berry MJ. The epigenetic role of vitamin C in neurodevelopment. Int J Mol Sci. 2022; 23(3), 1208. DOI:10.3390/ijms23031208.
  • Cao R, Xie J, Zhang L. Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sci. 2022; 17(1), 1679–1688. DOI:10.1515/biol-2022-0504.
  • Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014; 5, 3746. DOI:10.1038/ ncomms4746.
  • Menezo Y, Elder K, Clement A, Clement P. Folic acid, folinic acid, 5 methyl tetrahydrofolate supplementation for mutations that affect epigenesis through the folate and one-carbon cycles. Biomolecules. 2022; 12(2), 197. DOI:10.3390/biom12020197.
  • Ondičová M, Irwin RE, Thursby SJ, Hilman L, Caffrey A, Cassidy T, et al. Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms. Clin Epigenetics. 2022; 14(1), 63. DOI:10.1186/s13148-022-01282-y.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Doğum ve Kadın Hastalıkları Hemşireliği
Bölüm Derlemeler
Yazarlar

Betül Uncu 0000-0001-7691-6590

Elif Doğan 0000-0003-3374-1764

Yayımlanma Tarihi 30 Ocak 2024
Gönderilme Tarihi 6 Haziran 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Uncu, B., & Doğan, E. (2024). Epigenetik ve Gebelik. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 9(1), 161-165. https://doi.org/10.61399/ikcusbfd.1310676
AMA Uncu B, Doğan E. Epigenetik ve Gebelik. İKÇÜSBFD. Ocak 2024;9(1):161-165. doi:10.61399/ikcusbfd.1310676
Chicago Uncu, Betül, ve Elif Doğan. “Epigenetik Ve Gebelik”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 9, sy. 1 (Ocak 2024): 161-65. https://doi.org/10.61399/ikcusbfd.1310676.
EndNote Uncu B, Doğan E (01 Ocak 2024) Epigenetik ve Gebelik. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 9 1 161–165.
IEEE B. Uncu ve E. Doğan, “Epigenetik ve Gebelik”, İKÇÜSBFD, c. 9, sy. 1, ss. 161–165, 2024, doi: 10.61399/ikcusbfd.1310676.
ISNAD Uncu, Betül - Doğan, Elif. “Epigenetik Ve Gebelik”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 9/1 (Ocak 2024), 161-165. https://doi.org/10.61399/ikcusbfd.1310676.
JAMA Uncu B, Doğan E. Epigenetik ve Gebelik. İKÇÜSBFD. 2024;9:161–165.
MLA Uncu, Betül ve Elif Doğan. “Epigenetik Ve Gebelik”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, c. 9, sy. 1, 2024, ss. 161-5, doi:10.61399/ikcusbfd.1310676.
Vancouver Uncu B, Doğan E. Epigenetik ve Gebelik. İKÇÜSBFD. 2024;9(1):161-5.