Araştırma Makalesi
BibTex RIS Kaynak Göster

ST. JOHN'S WORT (HYPERICUM PERFORATUM L.) FLOWER BASED CARBON/GRAPHENE QUANTUM DOT STRUCTURE PRODUCTION AND CHARACTERIZATION FOR BIOIMAGING AND DRUG DELIVERY SYSTEMS

Yıl 2021, , 862 - 872, 29.11.2021
https://doi.org/10.33715/inonusaglik.941224

Öz

In this study, it was aimed to obtain carbon and graphene quantum dot structures from St. John's Wort (Hypericum perforatum L.) flowers, originating from the city of Hatay. Hypericum perforatum L. flower sample was subjected to carbonization at different temperatures such as 200, 225 and 250 ℃ for the desired quantum dot structure yields. It has been observed that the best radiation after carbonization is at 250 ℃. Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy techniques were used to determine the structural characterizations and surface morphology, respectively. The UV radiation of Hypericum perforatum L. flower-based carbon and graphene quantum structures was followed at 365 nm and the blue glow was observed very clearly. With this study, quantum and graphene dot structures based on Hypericum perforatum L. flower have been introduced to the literature for the first time. In addition, the quantum dot structures with blue radiation obtained within the scope of the study will be an alternative reference for many bioimaging and drug delivery system studies.

Kaynakça

  • Abbaspourrad, A., Datta, S. S., Weitz, D. A. (2013). Controlling release from pH- responsive microcapsules. Langmuir, 29, 12697–12702.
  • Ahvenainen, P., Kontro, I., Svedstro ̈m, K. (2016). Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose, 23, 1073-1086.
  • Baciu, A., Ranga, F., Fetea, F., Zavoi, S., Socacıu, C. (2013). Fingerprinting food supplements and their botanical ingredients by coupled UV/Vis/FTIR Spectrometry. Bulletin UASVM Food Science and Technology, 70, 8.
  • Cayuela, A., Kennedy, S. R., Soriano, M. L., Jones, C. D., Valcarcel, M., Steed, J. W. (2015). Fluorescent carbon dot–molecular salt hydrogels. Chemical Science, 6, 6139–6146.
  • Chen, F., Gao, W., Qiu, X., Zhang, H., Liu, L., Liao, P., … Luo, Y. (2017). Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers in Laboratory Medicine, 1, 192-199.
  • Chung, S., Revia, R. A., Zhang, M. (2019). Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Advanced Materials, 33, 1904362.
  • Das, R., Bandyopadhyay, R., Pramanik, P. (2018). Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 8, 96–109.
  • Devi, P., Saini, S., Kim, K-H. (2019). The advanced role of carbon quantum dots in nanomedical applications. Biosensors and Bioelectronics, 141, 111158.
  • Dinç, S., Kara, M. (2018). Synthesis and applications of carbon dots from food and natural products: A mini- review. Journal of Apitherapy and Nature, 1, 33-37.
  • Du, F. K, Zeng, F., Ming, Y. H., Wu, S. Z. (2013). Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchimica Acta, 180, 453–460.
  • Ekren, S., Sonmez, C., Bayram, E. (2010). Sarı Kantaron (Hypericum perforatum L. Klonlarında Bazı Tarımsal ve Kalite Özelliklerinin Belirlenmesi. Tarim Bilimleri Dergisi, C 16, 225-234
  • Jarzębski, M., Smułek, W., Baranowska, H. M., Masewicz, Ł., Kobus-Cisowska, J., Ligaj, M., Kaczorek, E. (2020). Characterization of St. John’s wort (Hypericum perforatum L.) and the impact of filtration process on bioactive extracts incorporated into carbohydrate-based hydrogels. Food Hydrocolloids, 104, 105748.
  • Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H-W., Mozafari, M. (2020). Quantum dots: A review from concept to clinic. Biotechnology Journal, 15(12), 2000117.
  • Kargozar S, Mozafari M. (2018). Nanotechnology and nanomedicine:start small, think big. Materials Today:Proceeding, 5, 15492-15500.
  • Kigozi, M., Koech, R. K., Kingsley, O., Ojeaga, I., Tebandeke, E., Kasozi, G. N., Onwualu, A. P. (2020). Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications. Results in Materials, 7, 100113.
  • Lim, H., Liu, Y., Kim, H. Y., Son, D. I. (2018). Facile synthesis and characterization of carbon quan- tum dots and photovoltaic applications. Thin Solid Films, 660, 672–677.
  • Lin, L. P., Wang, X. X., Lin, S. Q., Zhang, L. H., Lin, C. Q., Li, Z. M., Liu, J. M. (2012). Research on the spectral properties of luminescent carbon dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 95, 555–561.
  • Liu, J., Liu, Y., Liu, N., Han, Y. Z., Zhang, X., Huang, H., … Kang, Z. H. (2015). Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 347, 970–974.
  • Molaei, M. J. (2019). Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 9, 6460-6481.
  • Murru, C., Badía-Laíño, R., Díaz-García, M.E. (2020). Synthesis and characterization of green carbon dots for scavenging radical oxygen species in aqueous and oil samples. Antioxidants, 9, 1147-1164.
  • Nandiyanto, A.B. D., Oktiani, R., Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science & Technology, 4, 97-118.
  • Nikolic, G. S., Zlatkovic, S. Z. (2010). Assaying the variation in secondary metabolites of St. John’s Wort for its better use as an antibiotic. Journal of Medicinal Plants Research, 4, 211.
  • Önal, Y., Kır, Ş., Dehri, İ., Esen, R. (2019). Synthesis and characterization of graphene quantum dots from dried pine leaves. Journal of Turkish Chemical Society Chemical Engineering B, 2, 109-120.
  • Pandiyan, S., Arumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., …Gandhirajan, V. (2020). Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS Omega, 5(47), 30363-30372.
  • Peer, D., Karp, J. M., Hong, S., Farokhzad, Q. C., Margalit, R., Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. NatureNanotechnology, 2, 751–760.
  • Pohanka, M. (2017). Quantum dots in the therapy:current trends and perspectives. Mini Reviews in Medicinal Chemistry, 17, 650-656.
  • Shahla, A. F. F., Masoud, S. N., Davood, G. (2018). Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 481–493.
  • Taraj, K., Cıko, L., Malollari, I., Andoni, A., Ylli, F., Ylli, A., … Borshi, XH. (2019). Eco-extraction of essential oil from albanian hypericum perforatum l. and characterisation by spectroscopy techniques. Journal of Environmental Protection and Ecology, 20, 188-195.
  • Tian, L., Ghosh, D., Chen, W., Pradhan, S., Chang, X. J., Chen, S. W. (2009). Nanosized carbon particles from natural gas soot. Chemistry of Materials, 21, 2803–2809.
  • Wagner, A. M., Knipe, J. M., Orive, G., Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomateralia, 94, 44-63.
  • Wang. L., Zhou, H. S. (2014). Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Analtical Chemistry, 86, 8902–8905.
  • Wang, Q., Liu, X., Zhang, L. C., Lv, Y. (2012). Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst, 137, 5392–5397.
  • Xu, X. Y., Ray, R., Gu, Y. L., Ploehn, H. J., Gearheart, L., Raker, K., Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Jornal of American Chemical Society, 126, 12736–12737.
  • Xue, B., Yang, Y., Sun, Y., Fan, J., Li, X., Zhang, Z. (2019). Photoluminescent lignin hybridized car- bon quantum dots composites for bioimaging applications. International Journal of Biological Macromolecus, 122, 954–961.
  • Yang, S. T., Cao, L., Gao, P. J., Lu, F. S., Wang, X., Wang, H. F., …Sun, Y. P. (2009). Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 131(32), 11308–11309.
  • Yong, K. T. (2009). Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology, 20(1), 015102.
  • Zarrinbakhsh, N., Mohanty, A. K., Misra, M. (2013). Fundamental studies on water-washing of the corn ethanol coproduct (DDGS) and its characterization for biocomposite applications. Biomass Bioenergy, 55, 251–259.
  • Zheng, X. T., Ananthanarayanan, A., Luo, K. Q., Chen, P. (2015). Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 11, 1620-1636.

Biyogörüntüleme ve İlaç Taşıyıcı Sistemler için Sarı Kantaron (Hypericum perforatum L.) Çiçeği Temelli Karbon/Grafen Kuantum Dot Yapı Eldesi ve Karakterizasyonu

Yıl 2021, , 862 - 872, 29.11.2021
https://doi.org/10.33715/inonusaglik.941224

Öz

Bu çalışmada, Hatay ilinden toplanan sarı kantaron (Hypericum perforatum L.) çiçeklerinden karbon ve grafen kuantum dot yapıların elde edilmesi amaçlanmıştır. Hypericum perforatum L. çiçek örneği, istenilen kuantum dot yapı eldeleri için 200, 225, 250 ℃ gibi farklı sıcaklıklarda karbonizasyon işlemine tabi tutulmuştur. Karbonizasyon sonrası en iyi ışımanın 250 ℃’de olduğu gözlemlenmiştir. Yapısal karakterizasyonlarda ve yüzey morfoloji belirlenmesinde sırasıyla fourier dönüşümü kızılötesi spektrometre, X-ışını kırınımı ve taramalı elektron mikroskobu teknikleri kullanılmıştır. Hypericum perforatum L. çiçek temelli karbon ve grafen kuantum yapılarına ait UV ışıma ise 365 nm de takip edilmiş ve mavi renkli olan ışıma oldukça net bir şekilde gözlemlenmiştir. Yapılan çalışma ile ilk kez Hypericum perforatum L. çiçeği temelli kuantum ve grafen dot yapılar literatüre kazandırılmıştır. Buna ek olarak, çalışma kapsamında elde edilen mavi ışıma yapan kuantum dot yapılar pek çok biyogörüntüleme ve ilaç taşıyıcı sistem çalışmalarına alternatif bir referans olacaktır.

Kaynakça

  • Abbaspourrad, A., Datta, S. S., Weitz, D. A. (2013). Controlling release from pH- responsive microcapsules. Langmuir, 29, 12697–12702.
  • Ahvenainen, P., Kontro, I., Svedstro ̈m, K. (2016). Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose, 23, 1073-1086.
  • Baciu, A., Ranga, F., Fetea, F., Zavoi, S., Socacıu, C. (2013). Fingerprinting food supplements and their botanical ingredients by coupled UV/Vis/FTIR Spectrometry. Bulletin UASVM Food Science and Technology, 70, 8.
  • Cayuela, A., Kennedy, S. R., Soriano, M. L., Jones, C. D., Valcarcel, M., Steed, J. W. (2015). Fluorescent carbon dot–molecular salt hydrogels. Chemical Science, 6, 6139–6146.
  • Chen, F., Gao, W., Qiu, X., Zhang, H., Liu, L., Liao, P., … Luo, Y. (2017). Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers in Laboratory Medicine, 1, 192-199.
  • Chung, S., Revia, R. A., Zhang, M. (2019). Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Advanced Materials, 33, 1904362.
  • Das, R., Bandyopadhyay, R., Pramanik, P. (2018). Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 8, 96–109.
  • Devi, P., Saini, S., Kim, K-H. (2019). The advanced role of carbon quantum dots in nanomedical applications. Biosensors and Bioelectronics, 141, 111158.
  • Dinç, S., Kara, M. (2018). Synthesis and applications of carbon dots from food and natural products: A mini- review. Journal of Apitherapy and Nature, 1, 33-37.
  • Du, F. K, Zeng, F., Ming, Y. H., Wu, S. Z. (2013). Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchimica Acta, 180, 453–460.
  • Ekren, S., Sonmez, C., Bayram, E. (2010). Sarı Kantaron (Hypericum perforatum L. Klonlarında Bazı Tarımsal ve Kalite Özelliklerinin Belirlenmesi. Tarim Bilimleri Dergisi, C 16, 225-234
  • Jarzębski, M., Smułek, W., Baranowska, H. M., Masewicz, Ł., Kobus-Cisowska, J., Ligaj, M., Kaczorek, E. (2020). Characterization of St. John’s wort (Hypericum perforatum L.) and the impact of filtration process on bioactive extracts incorporated into carbohydrate-based hydrogels. Food Hydrocolloids, 104, 105748.
  • Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H-W., Mozafari, M. (2020). Quantum dots: A review from concept to clinic. Biotechnology Journal, 15(12), 2000117.
  • Kargozar S, Mozafari M. (2018). Nanotechnology and nanomedicine:start small, think big. Materials Today:Proceeding, 5, 15492-15500.
  • Kigozi, M., Koech, R. K., Kingsley, O., Ojeaga, I., Tebandeke, E., Kasozi, G. N., Onwualu, A. P. (2020). Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications. Results in Materials, 7, 100113.
  • Lim, H., Liu, Y., Kim, H. Y., Son, D. I. (2018). Facile synthesis and characterization of carbon quan- tum dots and photovoltaic applications. Thin Solid Films, 660, 672–677.
  • Lin, L. P., Wang, X. X., Lin, S. Q., Zhang, L. H., Lin, C. Q., Li, Z. M., Liu, J. M. (2012). Research on the spectral properties of luminescent carbon dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 95, 555–561.
  • Liu, J., Liu, Y., Liu, N., Han, Y. Z., Zhang, X., Huang, H., … Kang, Z. H. (2015). Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 347, 970–974.
  • Molaei, M. J. (2019). Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 9, 6460-6481.
  • Murru, C., Badía-Laíño, R., Díaz-García, M.E. (2020). Synthesis and characterization of green carbon dots for scavenging radical oxygen species in aqueous and oil samples. Antioxidants, 9, 1147-1164.
  • Nandiyanto, A.B. D., Oktiani, R., Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science & Technology, 4, 97-118.
  • Nikolic, G. S., Zlatkovic, S. Z. (2010). Assaying the variation in secondary metabolites of St. John’s Wort for its better use as an antibiotic. Journal of Medicinal Plants Research, 4, 211.
  • Önal, Y., Kır, Ş., Dehri, İ., Esen, R. (2019). Synthesis and characterization of graphene quantum dots from dried pine leaves. Journal of Turkish Chemical Society Chemical Engineering B, 2, 109-120.
  • Pandiyan, S., Arumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., …Gandhirajan, V. (2020). Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS Omega, 5(47), 30363-30372.
  • Peer, D., Karp, J. M., Hong, S., Farokhzad, Q. C., Margalit, R., Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. NatureNanotechnology, 2, 751–760.
  • Pohanka, M. (2017). Quantum dots in the therapy:current trends and perspectives. Mini Reviews in Medicinal Chemistry, 17, 650-656.
  • Shahla, A. F. F., Masoud, S. N., Davood, G. (2018). Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 481–493.
  • Taraj, K., Cıko, L., Malollari, I., Andoni, A., Ylli, F., Ylli, A., … Borshi, XH. (2019). Eco-extraction of essential oil from albanian hypericum perforatum l. and characterisation by spectroscopy techniques. Journal of Environmental Protection and Ecology, 20, 188-195.
  • Tian, L., Ghosh, D., Chen, W., Pradhan, S., Chang, X. J., Chen, S. W. (2009). Nanosized carbon particles from natural gas soot. Chemistry of Materials, 21, 2803–2809.
  • Wagner, A. M., Knipe, J. M., Orive, G., Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomateralia, 94, 44-63.
  • Wang. L., Zhou, H. S. (2014). Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Analtical Chemistry, 86, 8902–8905.
  • Wang, Q., Liu, X., Zhang, L. C., Lv, Y. (2012). Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst, 137, 5392–5397.
  • Xu, X. Y., Ray, R., Gu, Y. L., Ploehn, H. J., Gearheart, L., Raker, K., Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Jornal of American Chemical Society, 126, 12736–12737.
  • Xue, B., Yang, Y., Sun, Y., Fan, J., Li, X., Zhang, Z. (2019). Photoluminescent lignin hybridized car- bon quantum dots composites for bioimaging applications. International Journal of Biological Macromolecus, 122, 954–961.
  • Yang, S. T., Cao, L., Gao, P. J., Lu, F. S., Wang, X., Wang, H. F., …Sun, Y. P. (2009). Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 131(32), 11308–11309.
  • Yong, K. T. (2009). Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology, 20(1), 015102.
  • Zarrinbakhsh, N., Mohanty, A. K., Misra, M. (2013). Fundamental studies on water-washing of the corn ethanol coproduct (DDGS) and its characterization for biocomposite applications. Biomass Bioenergy, 55, 251–259.
  • Zheng, X. T., Ananthanarayanan, A., Luo, K. Q., Chen, P. (2015). Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 11, 1620-1636.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

İdil Karaca Açarı 0000-0001-6783-7030

Yunus Önal 0000-0001-6342-6816

Yayımlanma Tarihi 29 Kasım 2021
Gönderilme Tarihi 23 Mayıs 2021
Kabul Tarihi 2 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Karaca Açarı, İ., & Önal, Y. (2021). ST. JOHN’S WORT (HYPERICUM PERFORATUM L.) FLOWER BASED CARBON/GRAPHENE QUANTUM DOT STRUCTURE PRODUCTION AND CHARACTERIZATION FOR BIOIMAGING AND DRUG DELIVERY SYSTEMS. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 9(3), 862-872. https://doi.org/10.33715/inonusaglik.941224