Araştırma Makalesi
BibTex RIS Kaynak Göster

Alüminyum Alaşımı AA5052’nin Mekanik Özellikleri ve Performansı: Kapsamlı Bir Analiz

Yıl 2025, Cilt: 4 Sayı: 2, 44 - 57, 30.12.2025
https://doi.org/10.5281/zenodo.18038877

Öz

Bu çalışma, mükemmel korozyon direnci, şekillendirilebilirliği ve orta derecede mukavemeti nedeniyle çeşitli mühendislik uygulamalarında yaygın olarak kullanılan bir malzeme olan Alüminyum Alaşımı AA5052’nin mekanik özelliklerini ve performansını araştırmaktadır. Araştırma, çekme mukavemeti, sertlik, akma dayanımı, elastisite modülü, ısıl iletkenlik, yorulma dayanımı, darbe tokluğu ve kopmada uzama gibi temel mekanik özelliklerin analizini içermektedir. Her bir mekanik özellik için toplam 20 numune test edilmiştir ve sonuçlar, magnezyum (Mg) ve krom (Cr) yüzdelerinin artmasıyla çekme mukavemeti, sertlik ve yorulma dayanımında genel bir artış eğilimi ortaya koymuştur. Mekanik özellik verileri, AA5052’nin çekme mukavemetinin 220 MPa ile 370 MPa arasında, sertliğin 65 ile 125 Vickers arasında, akma dayanımının 175 MPa ile 310 MPa arasında ve elastisite modülünün 69,5 GPa ile 82,0 GPa arasında değiştiğini göstermiştir. Yorulma dayanımı 110 MPa ile 180 MPa arasında, darbe tokluğu ise 22 J ile 52 J arasında değişmiştir. Magnezyum içeriği, çekme mukavemeti ve uzama ile pozitif bir korelasyon göstermiş, krom ise sertlik ve akma dayanımını etkilemiştir. Eşleştirilmiş örneklem T-testleri, çeşitli mekanik özellikler arasında istatistiksel olarak anlamlı korelasyonlar ortaya koymuştur; çekme mukavemeti, sertlik (r = 0,65), akma dayanımı (r = 0,74) ve darbe tokluğu (r = 0,60) ile güçlü bir korelasyon göstermiştir. Bu sonuçlar, mukavemet ve dayanıklılığın kritik olduğu yapısal uygulamalarda alaşımın üstün performansını vurgulamaktadır. Bulgular, endüstriyel uygulamalarda geliştirilmiş mekanik performans için alaşımın bileşiminin optimize edilmesine yönelik değerli bilgiler sağlamaktadır.

Kaynakça

  • [1] Anwar, M. S., & Arifuzzaman, M. (2023). Experimental study on the effects of three alloying elements on the mechanical, corrosion, and microstructural properties of aluminium alloys. Results in Materials, 19, 100485. https://doi.org/10.1016/j.rinma.2023.100485
  • [2] Abdul-Jabar, H., Ali, S. F., & Salman, F. (2023). Improvement of mechanical properties of AA5052 by using different nanoparticles with constant weight percentage of Al₂O₃, TiO₂, and ZrO₂. Nucleation and Atmospheric Aerosols, 2(3), 45-56. https://doi.org/10.1063/5.0120441
  • [3] Chen, Z., & Ren, J. (2016). Heat mechanical treatment technology for improving comprehensive performance of aluminum alloy. Metals and Materials International, 22(4), 543-552.
  • [4] Chen, Z., & Ren, J. (2016). Heat mechanical treatment technology for improving comprehensive performance of aluminum alloy. Metals and Materials International, 25(2), 333-345.
  • [5] Fanglin, C. (2007). Conception et analyse mécaniques des pièces en aluminium pour application automobile. Mechanical Design Journal, 26(3), 112-123. https://doi.org/10.1522/24963809
  • [6] Ganapathi, R., Omprakash, B., Kumar, P., Pittala, R. K., Yelamasetti, B., & Dasore, A. (2024). Numerical analysis of the structure of an aluminium alloy piston: A comprehensive study. Journal of Physics: Conference Series, 2837(1), 012096. https://doi.org/10.1088/1742-6596/2837/1/012096
  • [7] Jinxiu, F., Zhu, Z., Zhang, X., Xie, L., & Huang, Z. (2021). Tensile deformation and fracture behaviour of AA5052 aluminium alloy under different strain rates. Journal of Materials Engineering and Performance, 30(5), 2413-2425. https://doi.org/10.1007/S11665-021-06112-5
  • [8] Kaufman, J. G. (2000). Properties of aluminium alloys: Tensile, creep, and fatigue data at high and low temperatures. ASM International, 1st Edition, 150-200.
  • [9] Liu, H., Ying, J., Chen, Z., Ma, C., Qian, S., Ouyang, Y. W., & Liu, X. (2024). Research status of mechanical properties of aluminium alloy grid structure. Structures, 65, 105967. https://doi.org/10.1016/j.istruc.2024.105967
  • [10] Maasi, G., & Senthilkumar, N. (2022). Mechanical and microstructural behavior of novel AA5052+Si₃N₄ MMC and comparing the performance with as-cast AA5052 authentic alloy. IEEE Conference Proceedings, 7(1), 12-23. https://doi.org/10.1109/MACS56771.2022.10022848
  • [11] Makimantra, S. (2016). Aluminum alloy, mechanical component manufactured through aluminum alloy, and application of aluminum alloy. Engineering Materials Journal, 31(2), 99-108.
  • [12] Montani, M. (2010). Aluminium alloy which is able to be cast by high-pressure die casting technique and results in better mechanical properties aluminium alloy product without heat treatment. Casting Technology Review, 19(4), 212-220.
  • [13] Ohuchi, Y., Tamamura, T., Asahi, N., Nakayama, M., Kanamaru, H., Hamada, A., Takahashi, Y., Tabata, K., & Mitamura, R. (1975). Aluminum alloys having improved mechanical properties and workability and method of making same. Journal of Metallurgical Engineering, 45(2), 88-97.
  • [14] Ricardo, B., Filippo, B., & Andrei, K. (2018). Special Issue on “Mechanical Behaviour of Aluminium Alloys.” Applied Sciences, 8(10), 1854. https://doi.org/10.3390/APP8101854
  • [15] Shokouh, A., Ebrahimi, M., Hsieh, T., Uan, J., & Gode, C. (2021). An insight into the vibration-assisted rolling of AA5052 aluminum alloy: Tensile strength, deformation microstructure, and texture evolution. Materials Science and Engineering A, 802, 140489. https://doi.org/10.1016/J.MSEA.2020.140489
  • [16] Sourav, S., Patil, N., Chandra, N., Kumar, N., Kumar, D., & Shetty, R. P. (2024). Analysis of mechanical properties of casted aluminium alloy for automotive safety application. Engineering Proceedings, 12(5), 157. https://doi.org/10.3390/engproc2023059157
  • [17] Vinda, P., Nyoman, I. G., Astawa, P., Herbirowo, S., & Mabruri, E. (2024). Mechanical properties and microstructure of Al–Mg (5052) alloy processed by equal-channel angular pressing (ECAP) with variation of ECAP routes and heat treatment. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya, 1(1), 37-46. https://doi.org/10.17073/0368-0797-2024-1-37-46
  • [18] Weimin, Y., Das, S. K., & Long, Z. (2008). Aluminum alloys: Fabrication, characterization, and applications. Materials Science Forum, 584, 115-124.
  • [19] Maurya, M., Kumar, S., & Bajpai, V. K. (2019). Assessment of the mechanical properties of aluminium metal matrix composite: A review. Journal of Reinforced Plastics and Composites, 38(6), 267–298. https://doi.org/10.1177/0731684418816379
  • [20] Venkatesh, R., Kaliyaperumal, G., Manivannan, S., Karthikeyan, S., Mohanavel, V., Elahi M. Soudagar, M., & Karthikeyan, N. (2024). Performance Evaluation of Nano Silicon Carbide Configured Aluminium Alloy with Titanium Nanocomposite via Semisolid Stir Cast. SAE Technical Paper Series, 1. https://doi.org/10.4271/2024-01-5235
  • [21] Magalhães, D. N., Vasques, É. R., Araújo, L., Praciano, L. H. de S., Souza, P. B. de, Amaral, K. C. do, & Silva, R. (2024). Análise da caracterização de um alumínio reciclado estudo de caso. Revista Fisio&terapia., 29(141), 11–12. https://doi.org/10.69849/revistaft/fa10202412162211
  • [22] Liu, H., Ma, C., Ying, J., Guo, L., & Chen, Z. (2024). Mechanical performance and design of aluminium alloy beam string structures. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2024.111798
  • [23] Fan, M., & Wang, X. (2024). Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering. Korean Journal of Materials Research. https://doi.org/10.3740/mrsk.2024.34.2.72
  • [24] [Mahale, R. S., Goggi, K. P., Vasanth, S., Kanaginahal, G. M., Raibole, V. S., Chikkegouda, S. P., Shashanka, R., Kakkamari, P., & Patil, A. (2024). Mechanical Alloying of Aluminium Alloys (pp. 89–126). IGI Global. https://doi.org/10.4018/978-1-6684-9385-4.ch004
  • [25] Zhou, T., Wang, Y., Bao, J., Zhao, P., An, R., Zhang, C., & Zhang, H. (2024). Investigation of the Al alloy armor materials: A review. Journal of Physics, 2891(16), 162019. https://doi.org/10.1088/1742-6596/2891/16/162019
  • [26] Aperador, W., Aperador, J., & Orozco-Hernández, G. (2024). Comparative Analysis of the Corrosion and Mechanical Behavior of an Al-SiC Composite and AA 2024 Alloy Fabricated by Powder Metallurgy for Aeronautical Applications. Superalloys, 14(12), 1462. https://doi.org/10.3390/met14121462
  • [27] Patil, S., Chandra, N., Kumar, N., Kumar, D., & Shetty, R. P. (2024). Analysis of Mechanical Properties of Casted Aluminium Alloy for Automotive Safety Application. https://doi.org/10.3390/engproc2023059157
  • [28] Sharma, J., Nayak, C., Chauhan, P. S., & Kumar, R. (2023). Studies and scientific research analysis of aluminium (Al7075) metal matrix composite surface morphology. https://doi.org/10.1016/j.matpr.2023.09.032
  • [29] Vellaichamy, R., Sudarsan, D., Tharisanan, R. T., Allahpitchai, M., & Krishnan, B. R. (2024). Investigate the mechanical properties of Aluminium Metal Matrix Composite. https://doi.org/10.1088/1742-6596/2748/1/012009

Mechanical Properties and Performance of Aluminium Alloy AA5052: A Comprehensive Analysis

Yıl 2025, Cilt: 4 Sayı: 2, 44 - 57, 30.12.2025
https://doi.org/10.5281/zenodo.18038877

Öz

This study investigates the mechanical properties and performance of Aluminium Alloy AA5052, a material commonly used in various engineering applications due to its excellent corrosion resistance, formability, and moderate strength. The investigation includes an analysis of key mechanical properties such as tensile strength, hardness, yield strength, modulus of elasticity, thermal conductivity, fatigue strength, impact toughness, and elongation at break. A total of 20 samples were tested for each mechanical property, with results revealing a general trend of increasing tensile strength, hardness, and fatigue strength with increasing percentages of magnesium (Mg) and chromium (Cr). The mechanical property data indicated that the tensile strength of AA5052 ranged from 220 MPa to 370 MPa, while hardness varied from 65 to 125 Vickers, yield strength ranged from 175 MPa to 310 MPa, and modulus of elasticity ranged from 69.5 GPa to 82.0 GPa. Fatigue strength varied from 110 MPa to 180 MPa, and impact toughness ranged from 22 J to 52 J. Magnesium content showed a positive correlation with tensile strength and elongation, whereas chromium influenced hardness and yield strength. Paired sample T-tests revealed statistically significant correlations between various mechanical properties, with tensile strength showing a strong correlation with hardness (r = 0.65), yield strength (r = 0.74), and impact toughness (r = 0.60). These results highlight the alloy's superior performance in structural applications where strength and durability are critical. The findings provide valuable insight into optimizing the alloy's composition for enhanced mechanical performance in industrial applications.

Kaynakça

  • [1] Anwar, M. S., & Arifuzzaman, M. (2023). Experimental study on the effects of three alloying elements on the mechanical, corrosion, and microstructural properties of aluminium alloys. Results in Materials, 19, 100485. https://doi.org/10.1016/j.rinma.2023.100485
  • [2] Abdul-Jabar, H., Ali, S. F., & Salman, F. (2023). Improvement of mechanical properties of AA5052 by using different nanoparticles with constant weight percentage of Al₂O₃, TiO₂, and ZrO₂. Nucleation and Atmospheric Aerosols, 2(3), 45-56. https://doi.org/10.1063/5.0120441
  • [3] Chen, Z., & Ren, J. (2016). Heat mechanical treatment technology for improving comprehensive performance of aluminum alloy. Metals and Materials International, 22(4), 543-552.
  • [4] Chen, Z., & Ren, J. (2016). Heat mechanical treatment technology for improving comprehensive performance of aluminum alloy. Metals and Materials International, 25(2), 333-345.
  • [5] Fanglin, C. (2007). Conception et analyse mécaniques des pièces en aluminium pour application automobile. Mechanical Design Journal, 26(3), 112-123. https://doi.org/10.1522/24963809
  • [6] Ganapathi, R., Omprakash, B., Kumar, P., Pittala, R. K., Yelamasetti, B., & Dasore, A. (2024). Numerical analysis of the structure of an aluminium alloy piston: A comprehensive study. Journal of Physics: Conference Series, 2837(1), 012096. https://doi.org/10.1088/1742-6596/2837/1/012096
  • [7] Jinxiu, F., Zhu, Z., Zhang, X., Xie, L., & Huang, Z. (2021). Tensile deformation and fracture behaviour of AA5052 aluminium alloy under different strain rates. Journal of Materials Engineering and Performance, 30(5), 2413-2425. https://doi.org/10.1007/S11665-021-06112-5
  • [8] Kaufman, J. G. (2000). Properties of aluminium alloys: Tensile, creep, and fatigue data at high and low temperatures. ASM International, 1st Edition, 150-200.
  • [9] Liu, H., Ying, J., Chen, Z., Ma, C., Qian, S., Ouyang, Y. W., & Liu, X. (2024). Research status of mechanical properties of aluminium alloy grid structure. Structures, 65, 105967. https://doi.org/10.1016/j.istruc.2024.105967
  • [10] Maasi, G., & Senthilkumar, N. (2022). Mechanical and microstructural behavior of novel AA5052+Si₃N₄ MMC and comparing the performance with as-cast AA5052 authentic alloy. IEEE Conference Proceedings, 7(1), 12-23. https://doi.org/10.1109/MACS56771.2022.10022848
  • [11] Makimantra, S. (2016). Aluminum alloy, mechanical component manufactured through aluminum alloy, and application of aluminum alloy. Engineering Materials Journal, 31(2), 99-108.
  • [12] Montani, M. (2010). Aluminium alloy which is able to be cast by high-pressure die casting technique and results in better mechanical properties aluminium alloy product without heat treatment. Casting Technology Review, 19(4), 212-220.
  • [13] Ohuchi, Y., Tamamura, T., Asahi, N., Nakayama, M., Kanamaru, H., Hamada, A., Takahashi, Y., Tabata, K., & Mitamura, R. (1975). Aluminum alloys having improved mechanical properties and workability and method of making same. Journal of Metallurgical Engineering, 45(2), 88-97.
  • [14] Ricardo, B., Filippo, B., & Andrei, K. (2018). Special Issue on “Mechanical Behaviour of Aluminium Alloys.” Applied Sciences, 8(10), 1854. https://doi.org/10.3390/APP8101854
  • [15] Shokouh, A., Ebrahimi, M., Hsieh, T., Uan, J., & Gode, C. (2021). An insight into the vibration-assisted rolling of AA5052 aluminum alloy: Tensile strength, deformation microstructure, and texture evolution. Materials Science and Engineering A, 802, 140489. https://doi.org/10.1016/J.MSEA.2020.140489
  • [16] Sourav, S., Patil, N., Chandra, N., Kumar, N., Kumar, D., & Shetty, R. P. (2024). Analysis of mechanical properties of casted aluminium alloy for automotive safety application. Engineering Proceedings, 12(5), 157. https://doi.org/10.3390/engproc2023059157
  • [17] Vinda, P., Nyoman, I. G., Astawa, P., Herbirowo, S., & Mabruri, E. (2024). Mechanical properties and microstructure of Al–Mg (5052) alloy processed by equal-channel angular pressing (ECAP) with variation of ECAP routes and heat treatment. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya, 1(1), 37-46. https://doi.org/10.17073/0368-0797-2024-1-37-46
  • [18] Weimin, Y., Das, S. K., & Long, Z. (2008). Aluminum alloys: Fabrication, characterization, and applications. Materials Science Forum, 584, 115-124.
  • [19] Maurya, M., Kumar, S., & Bajpai, V. K. (2019). Assessment of the mechanical properties of aluminium metal matrix composite: A review. Journal of Reinforced Plastics and Composites, 38(6), 267–298. https://doi.org/10.1177/0731684418816379
  • [20] Venkatesh, R., Kaliyaperumal, G., Manivannan, S., Karthikeyan, S., Mohanavel, V., Elahi M. Soudagar, M., & Karthikeyan, N. (2024). Performance Evaluation of Nano Silicon Carbide Configured Aluminium Alloy with Titanium Nanocomposite via Semisolid Stir Cast. SAE Technical Paper Series, 1. https://doi.org/10.4271/2024-01-5235
  • [21] Magalhães, D. N., Vasques, É. R., Araújo, L., Praciano, L. H. de S., Souza, P. B. de, Amaral, K. C. do, & Silva, R. (2024). Análise da caracterização de um alumínio reciclado estudo de caso. Revista Fisio&terapia., 29(141), 11–12. https://doi.org/10.69849/revistaft/fa10202412162211
  • [22] Liu, H., Ma, C., Ying, J., Guo, L., & Chen, Z. (2024). Mechanical performance and design of aluminium alloy beam string structures. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2024.111798
  • [23] Fan, M., & Wang, X. (2024). Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering. Korean Journal of Materials Research. https://doi.org/10.3740/mrsk.2024.34.2.72
  • [24] [Mahale, R. S., Goggi, K. P., Vasanth, S., Kanaginahal, G. M., Raibole, V. S., Chikkegouda, S. P., Shashanka, R., Kakkamari, P., & Patil, A. (2024). Mechanical Alloying of Aluminium Alloys (pp. 89–126). IGI Global. https://doi.org/10.4018/978-1-6684-9385-4.ch004
  • [25] Zhou, T., Wang, Y., Bao, J., Zhao, P., An, R., Zhang, C., & Zhang, H. (2024). Investigation of the Al alloy armor materials: A review. Journal of Physics, 2891(16), 162019. https://doi.org/10.1088/1742-6596/2891/16/162019
  • [26] Aperador, W., Aperador, J., & Orozco-Hernández, G. (2024). Comparative Analysis of the Corrosion and Mechanical Behavior of an Al-SiC Composite and AA 2024 Alloy Fabricated by Powder Metallurgy for Aeronautical Applications. Superalloys, 14(12), 1462. https://doi.org/10.3390/met14121462
  • [27] Patil, S., Chandra, N., Kumar, N., Kumar, D., & Shetty, R. P. (2024). Analysis of Mechanical Properties of Casted Aluminium Alloy for Automotive Safety Application. https://doi.org/10.3390/engproc2023059157
  • [28] Sharma, J., Nayak, C., Chauhan, P. S., & Kumar, R. (2023). Studies and scientific research analysis of aluminium (Al7075) metal matrix composite surface morphology. https://doi.org/10.1016/j.matpr.2023.09.032
  • [29] Vellaichamy, R., Sudarsan, D., Tharisanan, R. T., Allahpitchai, M., & Krishnan, B. R. (2024). Investigate the mechanical properties of Aluminium Metal Matrix Composite. https://doi.org/10.1088/1742-6596/2748/1/012009
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Dıckson Davıd Olodu 0000-0003-3383-2543

Stephen Igbinoba 0009-0008-0642-3860

Mercy Othuke Ozakpolor 0000-0002-7625-0087

Gönderilme Tarihi 18 Ağustos 2025
Kabul Tarihi 23 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Olodu, D. D., Igbinoba, S., & Ozakpolor, M. O. (2025). Mechanical Properties and Performance of Aluminium Alloy AA5052: A Comprehensive Analysis. Inspiring Technologies and Innovations, 4(2), 44-57. https://doi.org/10.5281/zenodo.18038877

Dergimiz 2024 Yılı Ocak ayı itibariyle artık İngilizce ve Türkçe yayınları kabul etmeye başlamıştır. Türkçe yayınlar İngilizce Özet içerecek şekilde kabul edilecektir. Yazım Kuralları menüsünden Tam Metin yazım şablonunu indirebilirsiniz.