Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 14 Sayı: 5, 2123 - 2149, 31.12.2025
https://doi.org/10.15869/itobiad.1729015

Öz

Kaynakça

  • Acemoglu, D., & Loebbing, J. (2022). Automation and polarization (No. w30528). National Bureau of Economic Research.
  • Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of political economy, 128(6), 2188-2244.
  • Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293-S340.
  • Antón, J. I., Fernández‐Macías, E., & Winter‐Ebmer, R. (2023). Does robotization affect job quality? Evidence from European regional labor markets. Industrial Relations: A Journal of Economy and Society, 62(3), 233-256.
  • Arntz, M., Gregory, T., & Zierahn, U. (2016). The risk of automation for jobs in OECD countries: A comparative analysis.
  • Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30.
  • Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. MIS quarterly, 44(1), 1-17.
  • Berg, J., Furrer, M., Harmon, E., Rani, U., & Silberman, M. S. (2018). Digital labour platforms and the future of work: Towards decent work in the online world.
  • Bessen, J. (2018). AI and jobs: The role of demand (No. w24235). National Bureau of Economic Research.
  • Bonsay, J., Cruz, A. P., Firozi, H. C., & Camaro, P. J. C. (2021). Artificial intelligence and labor productivity paradox: The economic impact of AI in China, India, Japan, and Singapore. Journal of Economics, Finance, and Accounting Studies, 3(2), 120.
  • Broady, K. E., Booth-Bell, D., Barr, A., & Meeks, A. (2025). Automation, artificial intelligence, and job displacement in the US, 2019–22. Labor History, 1-17.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & company.
  • Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (No. w24001). National Bureau of Economic Research.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The productivity J-curve: How intangibles complement general purpose technologies. American Economic Journal: Macroeconomics, 13(1), 333-372.
  • Chen, W. X., Srinivasan, S., & Zakerinia, S. (2025). Displacement Or Complementarity?: The Labor Market Impact of Generative AI. Harvard Business School.
  • Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and operations management, 27(10), 1868-1883.
  • Cong, J., Zheng, P., Bian, Y., Chen, C. H., Li, J., & Li, X. (2022). A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Computers & Industrial Engineering, 165, 107939.
  • Cortes, P., & Pan, J. (2019). Gender, occupational segregation, and automation. Economics Studies at Brookings, 1.
  • Crawford, K. (2021). The atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.
  • De Stefano, V., & Aloisi, A. (2019). Fundamental labour rights, platform work and human rights protection of non-standard workers. In Research handbook on labour, business and human rights law (pp. 359-379). Edward Elgar Publishing.
  • Demiral, M., & Demiral, Ö. (2023). Socio-economic productive capacities and energy efficiency: global evidence by income level and resource dependence. Environmental Science and Pollution Research, 30(15), 42766-42790.
  • Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way (Vol. 2156). Cham: Springer.
  • Experion Global. (n.d.). Warehouse Automation and AI. Retrieved from https://experionglobal.com/warehouse-automation-ai/
  • Felten, E. W., Raj, M., & Seamans, R. (2018). Linking Advances in Artificial Intelligence to Skills, Occupations, and Industries. In AEA Papers and Proceedings.
  • Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerization. Technological Forecasting & Social Change, 114, 254-280.
  • Georgieff, A., & Hyee, R. (2022). Artificial intelligence and employment: New cross-country evidence. Frontiers in artificial intelligence, 5, 832736.
  • Ghaith, K. (2024). AI integration in cultural heritage conservation–Ethical considerations and the human imperative. International Journal of Emerging and Disruptive Innovation in Education: VISIONARIUM, 2(1), 6.
  • Heilig, L., Lalla-Ruiz, E., & Voß, S. (2017). Digital transformation in maritime ports: analysis and a game theoretic framework. Netnomics: Economic research and electronic networking, 18(2), 227-254.
  • Hickok, M., & Maslej, N. (2023). A policy primer and roadmap on AI worker surveillance and productivity scoring tools. AI and Ethics, 3(3), 673-687.
  • International Labour Organization (ILO). (2023). World Employment and Social Outlook: Trends 2023. Geneva: International Labour Organization. Retrieved from https://www.ilo.org/publications/world-employment-and-social-outlook-trends-2023
  • International Transport Forum (ITF) - OECD. (2018). Adapting to Automation: The Transport Workforce Transition. Paris: OECD Publishing. Retrieved from https://www.itf-oecd.org/sites/default/files/docs/adapting-automation-transport-workforce-transition.pdf
  • Invensis. (n.d.). How AI is Transforming Logistics. Retrieved from https://www.invensis.net/blog/how-ai-is-transforming-logistics
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International journal of production research, 57(3), 829-846.
  • Krishnan, R., Govindaraj, M., Kandasamy, L., Perumal, E., & Mathews, S. B. (2024). Integrating Logistics Management with Artificial Intelligence and IoT for Enhanced Supply Chain Efficiency. In Anticipating Future Business Trends: Navigating Artificial Intelligence Innovations: Volume 1 (pp. 25-35). Cham: Springer Nature Switzerland.
  • Li, L. (2024). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 26(5), 1697-1712.
  • Mäkelä, E., & Stephany, F. (2024). Complement or substitute? How AI increases the demand for human skills. arXiv preprint arXiv:2412.19754.
  • Market, O. E. C. D. OECD Employment Outlook 2024.
  • McKinsey Global Institute. (2024). AI can transform workforce planning for travel and logistics companies. Retrieved from https://www.mckinsey.com/industries/travel/our-insights/ai-can-transform-workforce-planning-for-travel-and-logistics-companies
  • Mindell, D. A., & Reynolds, E. (2023). The work of the future: Building better jobs in an age of intelligent machines. Mit Press.
  • Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature machine intelligence, 1(11), 501-507.
  • Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science, 26, 39-68.
  • Mullens, D., & Shen, S. (2025). 2ACT: AI-Accentuated Career Transitions via Skill Bridges. arXiv preprint arXiv:2505.07914.
  • Nelson, J. P., Biddle, J. B., & Shapira, P. (2023). Applications and societal implications of artificial intelligence in manufacturing: A systematic review. arXiv preprint arXiv:2308.02025.
  • Obeidat, R., & Puiul, M. M. (2024). THE INFLUENCE OF ARTIFICIAL INTELLIGENCE ON WAREHOUSE MANAGEMENT SYSTEMS. Proceedings in Manufacturing Systems, 19(1), 43-50.
  • Patil, D. (2024). Impact of artificial intelligence on employment and workforce development: Risks, opportunities, and socioeconomic implications. Opportunities, And Socioeconomic Implications (November 12, 2024).
  • Peiwen, C., Sulaiman, N., & Zhenglong, S. (2025). The Impact of Artificial Intelligence Application on Job Displacement and Creation: A Systematic Review. International Journal of Research and Innovation in Social Science, 9(4), 2495-2517.
  • Persson, M., & Wallo, A. (2024). Digital automation and working life of HR practitioners: a gender analysis of the implications for workforce and work practices. Gender, Technology and Development, 28(3), 408-427.
  • Pustovalova, A., & Vahter, P. (2025). Automation-skill complementarity: the returns to soft skills in different stages of technology adoption. Economics of Innovation and New Technology, 1-27.
  • Radanliev, P., Santos, O., Brandon-Jones, A., & Joinson, A. (2024). Ethics and responsible AI deployment. Frontiers in Artificial Intelligence, 7, 1377011.
  • Rani, U., Kumar Dhir, R., Furrer, M., Gőbel, N., Moraiti, A., & Cooney, S. (2021). World employment and social outlook: the role of digital labour platforms in transforming the world of work. Geneva: International Labour Organisation.
  • Santoni de Sio, F. (2024). Artificial Intelligence and the Future of Work: Mapping the Ethical Issues. The Journal of Ethics, 28(3), 407-427.
  • Savushkin, N. (2024). Warehouse automation in logistics: Case study of Amazon and Ocado.
  • Sezer, İ. C., & Sorkun, M. F. (2024). An investigation on logistics firms’ human resources qualifications in transition to Industry 4.0: An insight from Türkiye. Procedia Computer Science, 232, 2580-2587.
  • Sharma, S. (2025). From Data to Decisions: Cloud, IoT, and AI Integration. In Integration of Cloud Computing and IoT (pp. 461-479). Chapman and Hall/CRC.
  • Simion, D., Postolache, F., Fleacă, B., & Fleacă, E. (2024). Ai-driven predictive maintenance in modern maritime transport—Enhancing operational efficiency and reliability. Applied Sciences, 14(20), 9439.
  • Sternberg, H. S., Hofmann, E., & Roeck, D. (2021). The struggle is real: insights from a supply chain blockchain case. Journal of Business Logistics, 42(1), 71-87.
  • Supply Chain Logistics World Platform. (n.d.). The Future of Autonomous Vehicles in Logistics and Supply Chain. Retrieved from https://www.supplychainlogisticswp.org/post/the-future-of-autonomous-vehicles-in-logistics-and-supply-chain
  • The Wall Street Journal. (2025). The Holy Grail of Automation: Now a Robot Can Unload a Truck. Retrieved from https://www.wsj.com/business/logistics/the-holy-grail-of-automation-now-a-robot-can-unload-a-truck-ad527ba8
  • TrailerBridge Insights. (2024). Transforming Logistics with AI and Upskilling: Lessons from the SHRM24 Conference. Retrieved from https://www.trailerbridge.com/insights-resources/blogs/transforming-logistics-with-ai-and-upskilling-lessons-from-the-shrm24-conference/
  • Türkiye Cumhuriyeti Karayolları Genel Müdürlüğü. (n.d.). Devlet ve İl Yol Envanteri [State and Provincial Road Inventory]. Karayolları Genel Müdürlüğü. Retrieved October 19, 2025, from https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Istatistikler/DevletveIlYolEnvanteri.aspx
  • Unctad. (2021). Technology and Innovation Report 2021: Catching Technological Waves-Innovation With Equity. UN.
  • Wang, Y., Han, J. H., & Beynon-Davies, P. (2019). Understanding blockchain technology for future supply chains: a systematic literature review and research agenda. Supply Chain Management: An International Journal, 24(1), 62-84.
  • West, S. M., Whittaker, M., & Crawford, K. (2019). Discriminating systems. AI Now, 2019, 1-33.
  • World Bank. (2022). World Development Report 2022: Finance for an Equitable Recovery. Washington, D.C.: World Bank Publications. Retrieved from https://www.worldbank.org/en/publication/wdr2022
  • World Economic Forum (WEF). (2020). The Future of Jobs Report 2020. Geneva: World Economic Forum. Retrieved from https://www.weforum.org/publications/the-future-of-jobs-report-2020/
  • Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired (pp. 203-213). Routledge.

Yıl 2025, Cilt: 14 Sayı: 5, 2123 - 2149, 31.12.2025
https://doi.org/10.15869/itobiad.1729015

Öz

Kaynakça

  • Acemoglu, D., & Loebbing, J. (2022). Automation and polarization (No. w30528). National Bureau of Economic Research.
  • Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of political economy, 128(6), 2188-2244.
  • Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293-S340.
  • Antón, J. I., Fernández‐Macías, E., & Winter‐Ebmer, R. (2023). Does robotization affect job quality? Evidence from European regional labor markets. Industrial Relations: A Journal of Economy and Society, 62(3), 233-256.
  • Arntz, M., Gregory, T., & Zierahn, U. (2016). The risk of automation for jobs in OECD countries: A comparative analysis.
  • Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30.
  • Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. MIS quarterly, 44(1), 1-17.
  • Berg, J., Furrer, M., Harmon, E., Rani, U., & Silberman, M. S. (2018). Digital labour platforms and the future of work: Towards decent work in the online world.
  • Bessen, J. (2018). AI and jobs: The role of demand (No. w24235). National Bureau of Economic Research.
  • Bonsay, J., Cruz, A. P., Firozi, H. C., & Camaro, P. J. C. (2021). Artificial intelligence and labor productivity paradox: The economic impact of AI in China, India, Japan, and Singapore. Journal of Economics, Finance, and Accounting Studies, 3(2), 120.
  • Broady, K. E., Booth-Bell, D., Barr, A., & Meeks, A. (2025). Automation, artificial intelligence, and job displacement in the US, 2019–22. Labor History, 1-17.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & company.
  • Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (No. w24001). National Bureau of Economic Research.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The productivity J-curve: How intangibles complement general purpose technologies. American Economic Journal: Macroeconomics, 13(1), 333-372.
  • Chen, W. X., Srinivasan, S., & Zakerinia, S. (2025). Displacement Or Complementarity?: The Labor Market Impact of Generative AI. Harvard Business School.
  • Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and operations management, 27(10), 1868-1883.
  • Cong, J., Zheng, P., Bian, Y., Chen, C. H., Li, J., & Li, X. (2022). A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Computers & Industrial Engineering, 165, 107939.
  • Cortes, P., & Pan, J. (2019). Gender, occupational segregation, and automation. Economics Studies at Brookings, 1.
  • Crawford, K. (2021). The atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.
  • De Stefano, V., & Aloisi, A. (2019). Fundamental labour rights, platform work and human rights protection of non-standard workers. In Research handbook on labour, business and human rights law (pp. 359-379). Edward Elgar Publishing.
  • Demiral, M., & Demiral, Ö. (2023). Socio-economic productive capacities and energy efficiency: global evidence by income level and resource dependence. Environmental Science and Pollution Research, 30(15), 42766-42790.
  • Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way (Vol. 2156). Cham: Springer.
  • Experion Global. (n.d.). Warehouse Automation and AI. Retrieved from https://experionglobal.com/warehouse-automation-ai/
  • Felten, E. W., Raj, M., & Seamans, R. (2018). Linking Advances in Artificial Intelligence to Skills, Occupations, and Industries. In AEA Papers and Proceedings.
  • Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerization. Technological Forecasting & Social Change, 114, 254-280.
  • Georgieff, A., & Hyee, R. (2022). Artificial intelligence and employment: New cross-country evidence. Frontiers in artificial intelligence, 5, 832736.
  • Ghaith, K. (2024). AI integration in cultural heritage conservation–Ethical considerations and the human imperative. International Journal of Emerging and Disruptive Innovation in Education: VISIONARIUM, 2(1), 6.
  • Heilig, L., Lalla-Ruiz, E., & Voß, S. (2017). Digital transformation in maritime ports: analysis and a game theoretic framework. Netnomics: Economic research and electronic networking, 18(2), 227-254.
  • Hickok, M., & Maslej, N. (2023). A policy primer and roadmap on AI worker surveillance and productivity scoring tools. AI and Ethics, 3(3), 673-687.
  • International Labour Organization (ILO). (2023). World Employment and Social Outlook: Trends 2023. Geneva: International Labour Organization. Retrieved from https://www.ilo.org/publications/world-employment-and-social-outlook-trends-2023
  • International Transport Forum (ITF) - OECD. (2018). Adapting to Automation: The Transport Workforce Transition. Paris: OECD Publishing. Retrieved from https://www.itf-oecd.org/sites/default/files/docs/adapting-automation-transport-workforce-transition.pdf
  • Invensis. (n.d.). How AI is Transforming Logistics. Retrieved from https://www.invensis.net/blog/how-ai-is-transforming-logistics
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International journal of production research, 57(3), 829-846.
  • Krishnan, R., Govindaraj, M., Kandasamy, L., Perumal, E., & Mathews, S. B. (2024). Integrating Logistics Management with Artificial Intelligence and IoT for Enhanced Supply Chain Efficiency. In Anticipating Future Business Trends: Navigating Artificial Intelligence Innovations: Volume 1 (pp. 25-35). Cham: Springer Nature Switzerland.
  • Li, L. (2024). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 26(5), 1697-1712.
  • Mäkelä, E., & Stephany, F. (2024). Complement or substitute? How AI increases the demand for human skills. arXiv preprint arXiv:2412.19754.
  • Market, O. E. C. D. OECD Employment Outlook 2024.
  • McKinsey Global Institute. (2024). AI can transform workforce planning for travel and logistics companies. Retrieved from https://www.mckinsey.com/industries/travel/our-insights/ai-can-transform-workforce-planning-for-travel-and-logistics-companies
  • Mindell, D. A., & Reynolds, E. (2023). The work of the future: Building better jobs in an age of intelligent machines. Mit Press.
  • Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature machine intelligence, 1(11), 501-507.
  • Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science, 26, 39-68.
  • Mullens, D., & Shen, S. (2025). 2ACT: AI-Accentuated Career Transitions via Skill Bridges. arXiv preprint arXiv:2505.07914.
  • Nelson, J. P., Biddle, J. B., & Shapira, P. (2023). Applications and societal implications of artificial intelligence in manufacturing: A systematic review. arXiv preprint arXiv:2308.02025.
  • Obeidat, R., & Puiul, M. M. (2024). THE INFLUENCE OF ARTIFICIAL INTELLIGENCE ON WAREHOUSE MANAGEMENT SYSTEMS. Proceedings in Manufacturing Systems, 19(1), 43-50.
  • Patil, D. (2024). Impact of artificial intelligence on employment and workforce development: Risks, opportunities, and socioeconomic implications. Opportunities, And Socioeconomic Implications (November 12, 2024).
  • Peiwen, C., Sulaiman, N., & Zhenglong, S. (2025). The Impact of Artificial Intelligence Application on Job Displacement and Creation: A Systematic Review. International Journal of Research and Innovation in Social Science, 9(4), 2495-2517.
  • Persson, M., & Wallo, A. (2024). Digital automation and working life of HR practitioners: a gender analysis of the implications for workforce and work practices. Gender, Technology and Development, 28(3), 408-427.
  • Pustovalova, A., & Vahter, P. (2025). Automation-skill complementarity: the returns to soft skills in different stages of technology adoption. Economics of Innovation and New Technology, 1-27.
  • Radanliev, P., Santos, O., Brandon-Jones, A., & Joinson, A. (2024). Ethics and responsible AI deployment. Frontiers in Artificial Intelligence, 7, 1377011.
  • Rani, U., Kumar Dhir, R., Furrer, M., Gőbel, N., Moraiti, A., & Cooney, S. (2021). World employment and social outlook: the role of digital labour platforms in transforming the world of work. Geneva: International Labour Organisation.
  • Santoni de Sio, F. (2024). Artificial Intelligence and the Future of Work: Mapping the Ethical Issues. The Journal of Ethics, 28(3), 407-427.
  • Savushkin, N. (2024). Warehouse automation in logistics: Case study of Amazon and Ocado.
  • Sezer, İ. C., & Sorkun, M. F. (2024). An investigation on logistics firms’ human resources qualifications in transition to Industry 4.0: An insight from Türkiye. Procedia Computer Science, 232, 2580-2587.
  • Sharma, S. (2025). From Data to Decisions: Cloud, IoT, and AI Integration. In Integration of Cloud Computing and IoT (pp. 461-479). Chapman and Hall/CRC.
  • Simion, D., Postolache, F., Fleacă, B., & Fleacă, E. (2024). Ai-driven predictive maintenance in modern maritime transport—Enhancing operational efficiency and reliability. Applied Sciences, 14(20), 9439.
  • Sternberg, H. S., Hofmann, E., & Roeck, D. (2021). The struggle is real: insights from a supply chain blockchain case. Journal of Business Logistics, 42(1), 71-87.
  • Supply Chain Logistics World Platform. (n.d.). The Future of Autonomous Vehicles in Logistics and Supply Chain. Retrieved from https://www.supplychainlogisticswp.org/post/the-future-of-autonomous-vehicles-in-logistics-and-supply-chain
  • The Wall Street Journal. (2025). The Holy Grail of Automation: Now a Robot Can Unload a Truck. Retrieved from https://www.wsj.com/business/logistics/the-holy-grail-of-automation-now-a-robot-can-unload-a-truck-ad527ba8
  • TrailerBridge Insights. (2024). Transforming Logistics with AI and Upskilling: Lessons from the SHRM24 Conference. Retrieved from https://www.trailerbridge.com/insights-resources/blogs/transforming-logistics-with-ai-and-upskilling-lessons-from-the-shrm24-conference/
  • Türkiye Cumhuriyeti Karayolları Genel Müdürlüğü. (n.d.). Devlet ve İl Yol Envanteri [State and Provincial Road Inventory]. Karayolları Genel Müdürlüğü. Retrieved October 19, 2025, from https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Istatistikler/DevletveIlYolEnvanteri.aspx
  • Unctad. (2021). Technology and Innovation Report 2021: Catching Technological Waves-Innovation With Equity. UN.
  • Wang, Y., Han, J. H., & Beynon-Davies, P. (2019). Understanding blockchain technology for future supply chains: a systematic literature review and research agenda. Supply Chain Management: An International Journal, 24(1), 62-84.
  • West, S. M., Whittaker, M., & Crawford, K. (2019). Discriminating systems. AI Now, 2019, 1-33.
  • World Bank. (2022). World Development Report 2022: Finance for an Equitable Recovery. Washington, D.C.: World Bank Publications. Retrieved from https://www.worldbank.org/en/publication/wdr2022
  • World Economic Forum (WEF). (2020). The Future of Jobs Report 2020. Geneva: World Economic Forum. Retrieved from https://www.weforum.org/publications/the-future-of-jobs-report-2020/
  • Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired (pp. 203-213). Routledge.

Yıl 2025, Cilt: 14 Sayı: 5, 2123 - 2149, 31.12.2025
https://doi.org/10.15869/itobiad.1729015

Öz

Kaynakça

  • Acemoglu, D., & Loebbing, J. (2022). Automation and polarization (No. w30528). National Bureau of Economic Research.
  • Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of political economy, 128(6), 2188-2244.
  • Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293-S340.
  • Antón, J. I., Fernández‐Macías, E., & Winter‐Ebmer, R. (2023). Does robotization affect job quality? Evidence from European regional labor markets. Industrial Relations: A Journal of Economy and Society, 62(3), 233-256.
  • Arntz, M., Gregory, T., & Zierahn, U. (2016). The risk of automation for jobs in OECD countries: A comparative analysis.
  • Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30.
  • Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. MIS quarterly, 44(1), 1-17.
  • Berg, J., Furrer, M., Harmon, E., Rani, U., & Silberman, M. S. (2018). Digital labour platforms and the future of work: Towards decent work in the online world.
  • Bessen, J. (2018). AI and jobs: The role of demand (No. w24235). National Bureau of Economic Research.
  • Bonsay, J., Cruz, A. P., Firozi, H. C., & Camaro, P. J. C. (2021). Artificial intelligence and labor productivity paradox: The economic impact of AI in China, India, Japan, and Singapore. Journal of Economics, Finance, and Accounting Studies, 3(2), 120.
  • Broady, K. E., Booth-Bell, D., Barr, A., & Meeks, A. (2025). Automation, artificial intelligence, and job displacement in the US, 2019–22. Labor History, 1-17.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & company.
  • Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (No. w24001). National Bureau of Economic Research.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The productivity J-curve: How intangibles complement general purpose technologies. American Economic Journal: Macroeconomics, 13(1), 333-372.
  • Chen, W. X., Srinivasan, S., & Zakerinia, S. (2025). Displacement Or Complementarity?: The Labor Market Impact of Generative AI. Harvard Business School.
  • Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and operations management, 27(10), 1868-1883.
  • Cong, J., Zheng, P., Bian, Y., Chen, C. H., Li, J., & Li, X. (2022). A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Computers & Industrial Engineering, 165, 107939.
  • Cortes, P., & Pan, J. (2019). Gender, occupational segregation, and automation. Economics Studies at Brookings, 1.
  • Crawford, K. (2021). The atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.
  • De Stefano, V., & Aloisi, A. (2019). Fundamental labour rights, platform work and human rights protection of non-standard workers. In Research handbook on labour, business and human rights law (pp. 359-379). Edward Elgar Publishing.
  • Demiral, M., & Demiral, Ö. (2023). Socio-economic productive capacities and energy efficiency: global evidence by income level and resource dependence. Environmental Science and Pollution Research, 30(15), 42766-42790.
  • Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way (Vol. 2156). Cham: Springer.
  • Experion Global. (n.d.). Warehouse Automation and AI. Retrieved from https://experionglobal.com/warehouse-automation-ai/
  • Felten, E. W., Raj, M., & Seamans, R. (2018). Linking Advances in Artificial Intelligence to Skills, Occupations, and Industries. In AEA Papers and Proceedings.
  • Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerization. Technological Forecasting & Social Change, 114, 254-280.
  • Georgieff, A., & Hyee, R. (2022). Artificial intelligence and employment: New cross-country evidence. Frontiers in artificial intelligence, 5, 832736.
  • Ghaith, K. (2024). AI integration in cultural heritage conservation–Ethical considerations and the human imperative. International Journal of Emerging and Disruptive Innovation in Education: VISIONARIUM, 2(1), 6.
  • Heilig, L., Lalla-Ruiz, E., & Voß, S. (2017). Digital transformation in maritime ports: analysis and a game theoretic framework. Netnomics: Economic research and electronic networking, 18(2), 227-254.
  • Hickok, M., & Maslej, N. (2023). A policy primer and roadmap on AI worker surveillance and productivity scoring tools. AI and Ethics, 3(3), 673-687.
  • International Labour Organization (ILO). (2023). World Employment and Social Outlook: Trends 2023. Geneva: International Labour Organization. Retrieved from https://www.ilo.org/publications/world-employment-and-social-outlook-trends-2023
  • International Transport Forum (ITF) - OECD. (2018). Adapting to Automation: The Transport Workforce Transition. Paris: OECD Publishing. Retrieved from https://www.itf-oecd.org/sites/default/files/docs/adapting-automation-transport-workforce-transition.pdf
  • Invensis. (n.d.). How AI is Transforming Logistics. Retrieved from https://www.invensis.net/blog/how-ai-is-transforming-logistics
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International journal of production research, 57(3), 829-846.
  • Krishnan, R., Govindaraj, M., Kandasamy, L., Perumal, E., & Mathews, S. B. (2024). Integrating Logistics Management with Artificial Intelligence and IoT for Enhanced Supply Chain Efficiency. In Anticipating Future Business Trends: Navigating Artificial Intelligence Innovations: Volume 1 (pp. 25-35). Cham: Springer Nature Switzerland.
  • Li, L. (2024). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 26(5), 1697-1712.
  • Mäkelä, E., & Stephany, F. (2024). Complement or substitute? How AI increases the demand for human skills. arXiv preprint arXiv:2412.19754.
  • Market, O. E. C. D. OECD Employment Outlook 2024.
  • McKinsey Global Institute. (2024). AI can transform workforce planning for travel and logistics companies. Retrieved from https://www.mckinsey.com/industries/travel/our-insights/ai-can-transform-workforce-planning-for-travel-and-logistics-companies
  • Mindell, D. A., & Reynolds, E. (2023). The work of the future: Building better jobs in an age of intelligent machines. Mit Press.
  • Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature machine intelligence, 1(11), 501-507.
  • Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science, 26, 39-68.
  • Mullens, D., & Shen, S. (2025). 2ACT: AI-Accentuated Career Transitions via Skill Bridges. arXiv preprint arXiv:2505.07914.
  • Nelson, J. P., Biddle, J. B., & Shapira, P. (2023). Applications and societal implications of artificial intelligence in manufacturing: A systematic review. arXiv preprint arXiv:2308.02025.
  • Obeidat, R., & Puiul, M. M. (2024). THE INFLUENCE OF ARTIFICIAL INTELLIGENCE ON WAREHOUSE MANAGEMENT SYSTEMS. Proceedings in Manufacturing Systems, 19(1), 43-50.
  • Patil, D. (2024). Impact of artificial intelligence on employment and workforce development: Risks, opportunities, and socioeconomic implications. Opportunities, And Socioeconomic Implications (November 12, 2024).
  • Peiwen, C., Sulaiman, N., & Zhenglong, S. (2025). The Impact of Artificial Intelligence Application on Job Displacement and Creation: A Systematic Review. International Journal of Research and Innovation in Social Science, 9(4), 2495-2517.
  • Persson, M., & Wallo, A. (2024). Digital automation and working life of HR practitioners: a gender analysis of the implications for workforce and work practices. Gender, Technology and Development, 28(3), 408-427.
  • Pustovalova, A., & Vahter, P. (2025). Automation-skill complementarity: the returns to soft skills in different stages of technology adoption. Economics of Innovation and New Technology, 1-27.
  • Radanliev, P., Santos, O., Brandon-Jones, A., & Joinson, A. (2024). Ethics and responsible AI deployment. Frontiers in Artificial Intelligence, 7, 1377011.
  • Rani, U., Kumar Dhir, R., Furrer, M., Gőbel, N., Moraiti, A., & Cooney, S. (2021). World employment and social outlook: the role of digital labour platforms in transforming the world of work. Geneva: International Labour Organisation.
  • Santoni de Sio, F. (2024). Artificial Intelligence and the Future of Work: Mapping the Ethical Issues. The Journal of Ethics, 28(3), 407-427.
  • Savushkin, N. (2024). Warehouse automation in logistics: Case study of Amazon and Ocado.
  • Sezer, İ. C., & Sorkun, M. F. (2024). An investigation on logistics firms’ human resources qualifications in transition to Industry 4.0: An insight from Türkiye. Procedia Computer Science, 232, 2580-2587.
  • Sharma, S. (2025). From Data to Decisions: Cloud, IoT, and AI Integration. In Integration of Cloud Computing and IoT (pp. 461-479). Chapman and Hall/CRC.
  • Simion, D., Postolache, F., Fleacă, B., & Fleacă, E. (2024). Ai-driven predictive maintenance in modern maritime transport—Enhancing operational efficiency and reliability. Applied Sciences, 14(20), 9439.
  • Sternberg, H. S., Hofmann, E., & Roeck, D. (2021). The struggle is real: insights from a supply chain blockchain case. Journal of Business Logistics, 42(1), 71-87.
  • Supply Chain Logistics World Platform. (n.d.). The Future of Autonomous Vehicles in Logistics and Supply Chain. Retrieved from https://www.supplychainlogisticswp.org/post/the-future-of-autonomous-vehicles-in-logistics-and-supply-chain
  • The Wall Street Journal. (2025). The Holy Grail of Automation: Now a Robot Can Unload a Truck. Retrieved from https://www.wsj.com/business/logistics/the-holy-grail-of-automation-now-a-robot-can-unload-a-truck-ad527ba8
  • TrailerBridge Insights. (2024). Transforming Logistics with AI and Upskilling: Lessons from the SHRM24 Conference. Retrieved from https://www.trailerbridge.com/insights-resources/blogs/transforming-logistics-with-ai-and-upskilling-lessons-from-the-shrm24-conference/
  • Türkiye Cumhuriyeti Karayolları Genel Müdürlüğü. (n.d.). Devlet ve İl Yol Envanteri [State and Provincial Road Inventory]. Karayolları Genel Müdürlüğü. Retrieved October 19, 2025, from https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Istatistikler/DevletveIlYolEnvanteri.aspx
  • Unctad. (2021). Technology and Innovation Report 2021: Catching Technological Waves-Innovation With Equity. UN.
  • Wang, Y., Han, J. H., & Beynon-Davies, P. (2019). Understanding blockchain technology for future supply chains: a systematic literature review and research agenda. Supply Chain Management: An International Journal, 24(1), 62-84.
  • West, S. M., Whittaker, M., & Crawford, K. (2019). Discriminating systems. AI Now, 2019, 1-33.
  • World Bank. (2022). World Development Report 2022: Finance for an Equitable Recovery. Washington, D.C.: World Bank Publications. Retrieved from https://www.worldbank.org/en/publication/wdr2022
  • World Economic Forum (WEF). (2020). The Future of Jobs Report 2020. Geneva: World Economic Forum. Retrieved from https://www.weforum.org/publications/the-future-of-jobs-report-2020/
  • Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired (pp. 203-213). Routledge.

The Impact of Artificial Intelligence on Workforce Displacement and Transformation in the Logistics Sector: The Case of Türkiye

Yıl 2025, Cilt: 14 Sayı: 5, 2123 - 2149, 31.12.2025
https://doi.org/10.15869/itobiad.1729015

Öz

The rapid integration of artificial intelligence (AI) technologies into the logistics sector is triggering a radical transformation process in the sector, particularly by replacing human labor through automation in operational tasks that require routine and medium skills. This study empirically examines the dual dynamics of workforce displacement and transformation in the Turkish logistics sector, focusing on the period 2015–2025. The main hypothesis of the study is that the use of AI deepens the productivity-employment paradox, encourages skill-based wage increases, and contributes to persistent labor market inequalities. Longitudinal labor market data disaggregated by gender and occupational groups were used in the analysis process, and four key employment indicators were evaluated through descriptive statistics and trend analyses: informal employment, unemployment rates, wage increases, and output per worker (productivity). The findings reveal a structural decrease in informal employment rates (e.g., a decrease from $27.6 in 2019 to $19.2 in 2023); However, it shows that productivity gains remain limited during periods of AI-intensive applications, and structural unemployment persists. Wage increases are observed to be concentrated in technical and AI-complementary roles, which are predominantly male-dominated. The most striking finding is that AI-enabled digital innovations have not translated into inclusive employment growth, as high unemployment rates persist and gender wage gaps widen. These results support the "productivity-employment paradox" and the skills-based technological change (SBTC) thesis. The study points to the urgency of reskilling strategies for low- and medium-skilled workers and emphasizes the need for equity-based policy initiatives to prevent the digital transformation process from reproducing socioeconomic inequalities.

Kaynakça

  • Acemoglu, D., & Loebbing, J. (2022). Automation and polarization (No. w30528). National Bureau of Economic Research.
  • Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of political economy, 128(6), 2188-2244.
  • Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293-S340.
  • Antón, J. I., Fernández‐Macías, E., & Winter‐Ebmer, R. (2023). Does robotization affect job quality? Evidence from European regional labor markets. Industrial Relations: A Journal of Economy and Society, 62(3), 233-256.
  • Arntz, M., Gregory, T., & Zierahn, U. (2016). The risk of automation for jobs in OECD countries: A comparative analysis.
  • Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30.
  • Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. MIS quarterly, 44(1), 1-17.
  • Berg, J., Furrer, M., Harmon, E., Rani, U., & Silberman, M. S. (2018). Digital labour platforms and the future of work: Towards decent work in the online world.
  • Bessen, J. (2018). AI and jobs: The role of demand (No. w24235). National Bureau of Economic Research.
  • Bonsay, J., Cruz, A. P., Firozi, H. C., & Camaro, P. J. C. (2021). Artificial intelligence and labor productivity paradox: The economic impact of AI in China, India, Japan, and Singapore. Journal of Economics, Finance, and Accounting Studies, 3(2), 120.
  • Broady, K. E., Booth-Bell, D., Barr, A., & Meeks, A. (2025). Automation, artificial intelligence, and job displacement in the US, 2019–22. Labor History, 1-17.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & company.
  • Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (No. w24001). National Bureau of Economic Research.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The productivity J-curve: How intangibles complement general purpose technologies. American Economic Journal: Macroeconomics, 13(1), 333-372.
  • Chen, W. X., Srinivasan, S., & Zakerinia, S. (2025). Displacement Or Complementarity?: The Labor Market Impact of Generative AI. Harvard Business School.
  • Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and operations management, 27(10), 1868-1883.
  • Cong, J., Zheng, P., Bian, Y., Chen, C. H., Li, J., & Li, X. (2022). A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Computers & Industrial Engineering, 165, 107939.
  • Cortes, P., & Pan, J. (2019). Gender, occupational segregation, and automation. Economics Studies at Brookings, 1.
  • Crawford, K. (2021). The atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.
  • De Stefano, V., & Aloisi, A. (2019). Fundamental labour rights, platform work and human rights protection of non-standard workers. In Research handbook on labour, business and human rights law (pp. 359-379). Edward Elgar Publishing.
  • Demiral, M., & Demiral, Ö. (2023). Socio-economic productive capacities and energy efficiency: global evidence by income level and resource dependence. Environmental Science and Pollution Research, 30(15), 42766-42790.
  • Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way (Vol. 2156). Cham: Springer.
  • Experion Global. (n.d.). Warehouse Automation and AI. Retrieved from https://experionglobal.com/warehouse-automation-ai/
  • Felten, E. W., Raj, M., & Seamans, R. (2018). Linking Advances in Artificial Intelligence to Skills, Occupations, and Industries. In AEA Papers and Proceedings.
  • Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerization. Technological Forecasting & Social Change, 114, 254-280.
  • Georgieff, A., & Hyee, R. (2022). Artificial intelligence and employment: New cross-country evidence. Frontiers in artificial intelligence, 5, 832736.
  • Ghaith, K. (2024). AI integration in cultural heritage conservation–Ethical considerations and the human imperative. International Journal of Emerging and Disruptive Innovation in Education: VISIONARIUM, 2(1), 6.
  • Heilig, L., Lalla-Ruiz, E., & Voß, S. (2017). Digital transformation in maritime ports: analysis and a game theoretic framework. Netnomics: Economic research and electronic networking, 18(2), 227-254.
  • Hickok, M., & Maslej, N. (2023). A policy primer and roadmap on AI worker surveillance and productivity scoring tools. AI and Ethics, 3(3), 673-687.
  • International Labour Organization (ILO). (2023). World Employment and Social Outlook: Trends 2023. Geneva: International Labour Organization. Retrieved from https://www.ilo.org/publications/world-employment-and-social-outlook-trends-2023
  • International Transport Forum (ITF) - OECD. (2018). Adapting to Automation: The Transport Workforce Transition. Paris: OECD Publishing. Retrieved from https://www.itf-oecd.org/sites/default/files/docs/adapting-automation-transport-workforce-transition.pdf
  • Invensis. (n.d.). How AI is Transforming Logistics. Retrieved from https://www.invensis.net/blog/how-ai-is-transforming-logistics
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International journal of production research, 57(3), 829-846.
  • Krishnan, R., Govindaraj, M., Kandasamy, L., Perumal, E., & Mathews, S. B. (2024). Integrating Logistics Management with Artificial Intelligence and IoT for Enhanced Supply Chain Efficiency. In Anticipating Future Business Trends: Navigating Artificial Intelligence Innovations: Volume 1 (pp. 25-35). Cham: Springer Nature Switzerland.
  • Li, L. (2024). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 26(5), 1697-1712.
  • Mäkelä, E., & Stephany, F. (2024). Complement or substitute? How AI increases the demand for human skills. arXiv preprint arXiv:2412.19754.
  • Market, O. E. C. D. OECD Employment Outlook 2024.
  • McKinsey Global Institute. (2024). AI can transform workforce planning for travel and logistics companies. Retrieved from https://www.mckinsey.com/industries/travel/our-insights/ai-can-transform-workforce-planning-for-travel-and-logistics-companies
  • Mindell, D. A., & Reynolds, E. (2023). The work of the future: Building better jobs in an age of intelligent machines. Mit Press.
  • Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature machine intelligence, 1(11), 501-507.
  • Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science, 26, 39-68.
  • Mullens, D., & Shen, S. (2025). 2ACT: AI-Accentuated Career Transitions via Skill Bridges. arXiv preprint arXiv:2505.07914.
  • Nelson, J. P., Biddle, J. B., & Shapira, P. (2023). Applications and societal implications of artificial intelligence in manufacturing: A systematic review. arXiv preprint arXiv:2308.02025.
  • Obeidat, R., & Puiul, M. M. (2024). THE INFLUENCE OF ARTIFICIAL INTELLIGENCE ON WAREHOUSE MANAGEMENT SYSTEMS. Proceedings in Manufacturing Systems, 19(1), 43-50.
  • Patil, D. (2024). Impact of artificial intelligence on employment and workforce development: Risks, opportunities, and socioeconomic implications. Opportunities, And Socioeconomic Implications (November 12, 2024).
  • Peiwen, C., Sulaiman, N., & Zhenglong, S. (2025). The Impact of Artificial Intelligence Application on Job Displacement and Creation: A Systematic Review. International Journal of Research and Innovation in Social Science, 9(4), 2495-2517.
  • Persson, M., & Wallo, A. (2024). Digital automation and working life of HR practitioners: a gender analysis of the implications for workforce and work practices. Gender, Technology and Development, 28(3), 408-427.
  • Pustovalova, A., & Vahter, P. (2025). Automation-skill complementarity: the returns to soft skills in different stages of technology adoption. Economics of Innovation and New Technology, 1-27.
  • Radanliev, P., Santos, O., Brandon-Jones, A., & Joinson, A. (2024). Ethics and responsible AI deployment. Frontiers in Artificial Intelligence, 7, 1377011.
  • Rani, U., Kumar Dhir, R., Furrer, M., Gőbel, N., Moraiti, A., & Cooney, S. (2021). World employment and social outlook: the role of digital labour platforms in transforming the world of work. Geneva: International Labour Organisation.
  • Santoni de Sio, F. (2024). Artificial Intelligence and the Future of Work: Mapping the Ethical Issues. The Journal of Ethics, 28(3), 407-427.
  • Savushkin, N. (2024). Warehouse automation in logistics: Case study of Amazon and Ocado.
  • Sezer, İ. C., & Sorkun, M. F. (2024). An investigation on logistics firms’ human resources qualifications in transition to Industry 4.0: An insight from Türkiye. Procedia Computer Science, 232, 2580-2587.
  • Sharma, S. (2025). From Data to Decisions: Cloud, IoT, and AI Integration. In Integration of Cloud Computing and IoT (pp. 461-479). Chapman and Hall/CRC.
  • Simion, D., Postolache, F., Fleacă, B., & Fleacă, E. (2024). Ai-driven predictive maintenance in modern maritime transport—Enhancing operational efficiency and reliability. Applied Sciences, 14(20), 9439.
  • Sternberg, H. S., Hofmann, E., & Roeck, D. (2021). The struggle is real: insights from a supply chain blockchain case. Journal of Business Logistics, 42(1), 71-87.
  • Supply Chain Logistics World Platform. (n.d.). The Future of Autonomous Vehicles in Logistics and Supply Chain. Retrieved from https://www.supplychainlogisticswp.org/post/the-future-of-autonomous-vehicles-in-logistics-and-supply-chain
  • The Wall Street Journal. (2025). The Holy Grail of Automation: Now a Robot Can Unload a Truck. Retrieved from https://www.wsj.com/business/logistics/the-holy-grail-of-automation-now-a-robot-can-unload-a-truck-ad527ba8
  • TrailerBridge Insights. (2024). Transforming Logistics with AI and Upskilling: Lessons from the SHRM24 Conference. Retrieved from https://www.trailerbridge.com/insights-resources/blogs/transforming-logistics-with-ai-and-upskilling-lessons-from-the-shrm24-conference/
  • Türkiye Cumhuriyeti Karayolları Genel Müdürlüğü. (n.d.). Devlet ve İl Yol Envanteri [State and Provincial Road Inventory]. Karayolları Genel Müdürlüğü. Retrieved October 19, 2025, from https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Istatistikler/DevletveIlYolEnvanteri.aspx
  • Unctad. (2021). Technology and Innovation Report 2021: Catching Technological Waves-Innovation With Equity. UN.
  • Wang, Y., Han, J. H., & Beynon-Davies, P. (2019). Understanding blockchain technology for future supply chains: a systematic literature review and research agenda. Supply Chain Management: An International Journal, 24(1), 62-84.
  • West, S. M., Whittaker, M., & Crawford, K. (2019). Discriminating systems. AI Now, 2019, 1-33.
  • World Bank. (2022). World Development Report 2022: Finance for an Equitable Recovery. Washington, D.C.: World Bank Publications. Retrieved from https://www.worldbank.org/en/publication/wdr2022
  • World Economic Forum (WEF). (2020). The Future of Jobs Report 2020. Geneva: World Economic Forum. Retrieved from https://www.weforum.org/publications/the-future-of-jobs-report-2020/
  • Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired (pp. 203-213). Routledge.

Lojistik Sektöründe İşgücü Yer Değişimi ve Dönüşümüne Yapay Zeka’nın Etkisi: Türkiye Örneği

Yıl 2025, Cilt: 14 Sayı: 5, 2123 - 2149, 31.12.2025
https://doi.org/10.15869/itobiad.1729015

Öz

Yapay zekâ (YZ) teknolojilerinin lojistik sektörüne hızla entegre edilmesi, özellikle rutin, orta beceri gerektiren operasyonel görevlerde otomasyona dayalı insan emeğinin yer değiştirmesine yol açan radikal bir dönüşüme yol açmaktadır. Bu çalışma, Türkiye'nin lojistik sektöründe 2015-2025 döneminde işgücü yer değiştirmesi ve dönüşümünün ikili dinamiklerini ampirik olarak incelemektedir. Özellikle, YZ kullanımının verimlilik-istihdam paradoksuna, beceriye dayalı ücret artışlarına ve kalıcı işgücü piyasası eşitsizliklerine katkıda bulunduğu hipotezi test edilmiştir. Analiz, cinsiyet ve mesleğe göre ayrıştırılmış uzunlamasına işgücü piyasası verilerini kullanarak, tanımlayıcı istatistikler ve trend analizi yoluyla dört temel istihdam göstergesini değerlendirmektedir: gayriresmî istihdam, işsizlik oranları, ücret artışları ve çalışan başına çıktı (üretkenlik). Bulgular, kayıt dışı istihdam oranında yapısal bir düşüş olduğunu (örneğin, 2019'da 27,6 dolardan 2023'te 19,2 dolara) ortaya koymaktadır; ancak yapay zekâ yoğun uygulamaların gözlemlendiği yıllarda sınırlı üretkenlik kazanımlarının yanı sıra kalıcı yapısal işsizliği de göstermektedir. Ücret artışları, erkeklerin egemen olduğu teknik ve yapay zekâyı tamamlayıcı rollerde yoğunlaşmaktadır. En önemlisi, yüksek işsizliğin devam etmesi ve cinsiyetler arası ücret farkının giderek artması, yapay zekâ destekli dijital yeniliklerin kapsayıcı istihdam büyümesine dönüşmediğini doğrulamaktadır. Bu sonuçlar "üretkenlik-istihdam paradoksu"nu desteklemekte ve beceri odaklı teknolojik değişim (SBTC) tezini desteklemektedir. Çalışma, düşük ve orta düzey beceriye sahip çalışanlar için yeniden beceri kazandırma stratejilerinin aciliyetini ve dijital dönüşümün sosyoekonomik eşitsizlikleri yeniden üretmemesini sağlamak için eşitlik temelli politika girişimlerine olan ihtiyacı vurgulamaktadır.

Kaynakça

  • Acemoglu, D., & Loebbing, J. (2022). Automation and polarization (No. w30528). National Bureau of Economic Research.
  • Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of political economy, 128(6), 2188-2244.
  • Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293-S340.
  • Antón, J. I., Fernández‐Macías, E., & Winter‐Ebmer, R. (2023). Does robotization affect job quality? Evidence from European regional labor markets. Industrial Relations: A Journal of Economy and Society, 62(3), 233-256.
  • Arntz, M., Gregory, T., & Zierahn, U. (2016). The risk of automation for jobs in OECD countries: A comparative analysis.
  • Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30.
  • Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. MIS quarterly, 44(1), 1-17.
  • Berg, J., Furrer, M., Harmon, E., Rani, U., & Silberman, M. S. (2018). Digital labour platforms and the future of work: Towards decent work in the online world.
  • Bessen, J. (2018). AI and jobs: The role of demand (No. w24235). National Bureau of Economic Research.
  • Bonsay, J., Cruz, A. P., Firozi, H. C., & Camaro, P. J. C. (2021). Artificial intelligence and labor productivity paradox: The economic impact of AI in China, India, Japan, and Singapore. Journal of Economics, Finance, and Accounting Studies, 3(2), 120.
  • Broady, K. E., Booth-Bell, D., Barr, A., & Meeks, A. (2025). Automation, artificial intelligence, and job displacement in the US, 2019–22. Labor History, 1-17.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & company.
  • Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (No. w24001). National Bureau of Economic Research.
  • Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The productivity J-curve: How intangibles complement general purpose technologies. American Economic Journal: Macroeconomics, 13(1), 333-372.
  • Chen, W. X., Srinivasan, S., & Zakerinia, S. (2025). Displacement Or Complementarity?: The Labor Market Impact of Generative AI. Harvard Business School.
  • Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and operations management, 27(10), 1868-1883.
  • Cong, J., Zheng, P., Bian, Y., Chen, C. H., Li, J., & Li, X. (2022). A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Computers & Industrial Engineering, 165, 107939.
  • Cortes, P., & Pan, J. (2019). Gender, occupational segregation, and automation. Economics Studies at Brookings, 1.
  • Crawford, K. (2021). The atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.
  • De Stefano, V., & Aloisi, A. (2019). Fundamental labour rights, platform work and human rights protection of non-standard workers. In Research handbook on labour, business and human rights law (pp. 359-379). Edward Elgar Publishing.
  • Demiral, M., & Demiral, Ö. (2023). Socio-economic productive capacities and energy efficiency: global evidence by income level and resource dependence. Environmental Science and Pollution Research, 30(15), 42766-42790.
  • Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way (Vol. 2156). Cham: Springer.
  • Experion Global. (n.d.). Warehouse Automation and AI. Retrieved from https://experionglobal.com/warehouse-automation-ai/
  • Felten, E. W., Raj, M., & Seamans, R. (2018). Linking Advances in Artificial Intelligence to Skills, Occupations, and Industries. In AEA Papers and Proceedings.
  • Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerization. Technological Forecasting & Social Change, 114, 254-280.
  • Georgieff, A., & Hyee, R. (2022). Artificial intelligence and employment: New cross-country evidence. Frontiers in artificial intelligence, 5, 832736.
  • Ghaith, K. (2024). AI integration in cultural heritage conservation–Ethical considerations and the human imperative. International Journal of Emerging and Disruptive Innovation in Education: VISIONARIUM, 2(1), 6.
  • Heilig, L., Lalla-Ruiz, E., & Voß, S. (2017). Digital transformation in maritime ports: analysis and a game theoretic framework. Netnomics: Economic research and electronic networking, 18(2), 227-254.
  • Hickok, M., & Maslej, N. (2023). A policy primer and roadmap on AI worker surveillance and productivity scoring tools. AI and Ethics, 3(3), 673-687.
  • International Labour Organization (ILO). (2023). World Employment and Social Outlook: Trends 2023. Geneva: International Labour Organization. Retrieved from https://www.ilo.org/publications/world-employment-and-social-outlook-trends-2023
  • International Transport Forum (ITF) - OECD. (2018). Adapting to Automation: The Transport Workforce Transition. Paris: OECD Publishing. Retrieved from https://www.itf-oecd.org/sites/default/files/docs/adapting-automation-transport-workforce-transition.pdf
  • Invensis. (n.d.). How AI is Transforming Logistics. Retrieved from https://www.invensis.net/blog/how-ai-is-transforming-logistics
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International journal of production research, 57(3), 829-846.
  • Krishnan, R., Govindaraj, M., Kandasamy, L., Perumal, E., & Mathews, S. B. (2024). Integrating Logistics Management with Artificial Intelligence and IoT for Enhanced Supply Chain Efficiency. In Anticipating Future Business Trends: Navigating Artificial Intelligence Innovations: Volume 1 (pp. 25-35). Cham: Springer Nature Switzerland.
  • Li, L. (2024). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 26(5), 1697-1712.
  • Mäkelä, E., & Stephany, F. (2024). Complement or substitute? How AI increases the demand for human skills. arXiv preprint arXiv:2412.19754.
  • Market, O. E. C. D. OECD Employment Outlook 2024.
  • McKinsey Global Institute. (2024). AI can transform workforce planning for travel and logistics companies. Retrieved from https://www.mckinsey.com/industries/travel/our-insights/ai-can-transform-workforce-planning-for-travel-and-logistics-companies
  • Mindell, D. A., & Reynolds, E. (2023). The work of the future: Building better jobs in an age of intelligent machines. Mit Press.
  • Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature machine intelligence, 1(11), 501-507.
  • Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science, 26, 39-68.
  • Mullens, D., & Shen, S. (2025). 2ACT: AI-Accentuated Career Transitions via Skill Bridges. arXiv preprint arXiv:2505.07914.
  • Nelson, J. P., Biddle, J. B., & Shapira, P. (2023). Applications and societal implications of artificial intelligence in manufacturing: A systematic review. arXiv preprint arXiv:2308.02025.
  • Obeidat, R., & Puiul, M. M. (2024). THE INFLUENCE OF ARTIFICIAL INTELLIGENCE ON WAREHOUSE MANAGEMENT SYSTEMS. Proceedings in Manufacturing Systems, 19(1), 43-50.
  • Patil, D. (2024). Impact of artificial intelligence on employment and workforce development: Risks, opportunities, and socioeconomic implications. Opportunities, And Socioeconomic Implications (November 12, 2024).
  • Peiwen, C., Sulaiman, N., & Zhenglong, S. (2025). The Impact of Artificial Intelligence Application on Job Displacement and Creation: A Systematic Review. International Journal of Research and Innovation in Social Science, 9(4), 2495-2517.
  • Persson, M., & Wallo, A. (2024). Digital automation and working life of HR practitioners: a gender analysis of the implications for workforce and work practices. Gender, Technology and Development, 28(3), 408-427.
  • Pustovalova, A., & Vahter, P. (2025). Automation-skill complementarity: the returns to soft skills in different stages of technology adoption. Economics of Innovation and New Technology, 1-27.
  • Radanliev, P., Santos, O., Brandon-Jones, A., & Joinson, A. (2024). Ethics and responsible AI deployment. Frontiers in Artificial Intelligence, 7, 1377011.
  • Rani, U., Kumar Dhir, R., Furrer, M., Gőbel, N., Moraiti, A., & Cooney, S. (2021). World employment and social outlook: the role of digital labour platforms in transforming the world of work. Geneva: International Labour Organisation.
  • Santoni de Sio, F. (2024). Artificial Intelligence and the Future of Work: Mapping the Ethical Issues. The Journal of Ethics, 28(3), 407-427.
  • Savushkin, N. (2024). Warehouse automation in logistics: Case study of Amazon and Ocado.
  • Sezer, İ. C., & Sorkun, M. F. (2024). An investigation on logistics firms’ human resources qualifications in transition to Industry 4.0: An insight from Türkiye. Procedia Computer Science, 232, 2580-2587.
  • Sharma, S. (2025). From Data to Decisions: Cloud, IoT, and AI Integration. In Integration of Cloud Computing and IoT (pp. 461-479). Chapman and Hall/CRC.
  • Simion, D., Postolache, F., Fleacă, B., & Fleacă, E. (2024). Ai-driven predictive maintenance in modern maritime transport—Enhancing operational efficiency and reliability. Applied Sciences, 14(20), 9439.
  • Sternberg, H. S., Hofmann, E., & Roeck, D. (2021). The struggle is real: insights from a supply chain blockchain case. Journal of Business Logistics, 42(1), 71-87.
  • Supply Chain Logistics World Platform. (n.d.). The Future of Autonomous Vehicles in Logistics and Supply Chain. Retrieved from https://www.supplychainlogisticswp.org/post/the-future-of-autonomous-vehicles-in-logistics-and-supply-chain
  • The Wall Street Journal. (2025). The Holy Grail of Automation: Now a Robot Can Unload a Truck. Retrieved from https://www.wsj.com/business/logistics/the-holy-grail-of-automation-now-a-robot-can-unload-a-truck-ad527ba8
  • TrailerBridge Insights. (2024). Transforming Logistics with AI and Upskilling: Lessons from the SHRM24 Conference. Retrieved from https://www.trailerbridge.com/insights-resources/blogs/transforming-logistics-with-ai-and-upskilling-lessons-from-the-shrm24-conference/
  • Türkiye Cumhuriyeti Karayolları Genel Müdürlüğü. (n.d.). Devlet ve İl Yol Envanteri [State and Provincial Road Inventory]. Karayolları Genel Müdürlüğü. Retrieved October 19, 2025, from https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Istatistikler/DevletveIlYolEnvanteri.aspx
  • Unctad. (2021). Technology and Innovation Report 2021: Catching Technological Waves-Innovation With Equity. UN.
  • Wang, Y., Han, J. H., & Beynon-Davies, P. (2019). Understanding blockchain technology for future supply chains: a systematic literature review and research agenda. Supply Chain Management: An International Journal, 24(1), 62-84.
  • West, S. M., Whittaker, M., & Crawford, K. (2019). Discriminating systems. AI Now, 2019, 1-33.
  • World Bank. (2022). World Development Report 2022: Finance for an Equitable Recovery. Washington, D.C.: World Bank Publications. Retrieved from https://www.worldbank.org/en/publication/wdr2022
  • World Economic Forum (WEF). (2020). The Future of Jobs Report 2020. Geneva: World Economic Forum. Retrieved from https://www.weforum.org/publications/the-future-of-jobs-report-2020/
  • Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired (pp. 203-213). Routledge.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Karşılaştırmalı Ekonomik Sistemler, Ulaşım Ekonomisi, İş Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Ergün 0000-0003-1675-0802

Gönderilme Tarihi 27 Haziran 2025
Kabul Tarihi 24 Ekim 2025
Erken Görünüm Tarihi 16 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 5

Kaynak Göster

APA Ergün, M. (2025). The Impact of Artificial Intelligence on Workforce Displacement and Transformation in the Logistics Sector: The Case of Türkiye. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(5), 2123-2149. https://doi.org/10.15869/itobiad.1729015
İnsan ve Toplum Bilimleri Araştırmaları Dergisi  Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır. 

35894