Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 14 Sayı: 5, 2697 - 2722, 31.12.2025
https://doi.org/10.15869/itobiad.1743272

Öz

Kaynakça

  • Arnon, I., Cottrill, J., Dubinsky, E. D., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education, Springer New York. https://doi.org/10.1007/978-1-4614-7966-6
  • Blomhøj, M., & Jensen, T. H. (2006). What’s all the fuss about skills? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). Springer.
  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht – Trends und Perspektiven. – In Kadunz, G. et al. (Eds). Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik (pp. 15-38) Wien: Hölder-Pichler-Tempsky.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58. https://doi.org/10.1007/978-3-319-12688-3_9
  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12) (pp. 222–231). Springer.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM – Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo Ferri, R. (2010). Modelling for life: Meaningful modelling activities in mathematics education. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modelling students’ mathematical modelling skills (pp. 297–308). Springer.
  • Bukova Güzel, E., Tekin Dede, A., Hıdıroğlu, Ç.N., Kula Ünver, S. ve Özaltun Çelik, A. (2018). Matematiksel modellemeye giriş [Introduction to mathematical modelling]. In E. Bukova Güzel (Eds.), Matematik eğitiminde matematiksel modelleme [Mathematical modelling in mathematics education] (pp.1-16). Ankara: Anı Publishing.
  • Cevikbas, M., Kaiser, G., & Schukajlow, S. (2024). Trends in mathematics education and insights from a meta-review and bibliometric analysis of review studies. ZDM–Mathematics Education, 56(2), 165-188. https://doi.org/10.1007/s11858-024-01587-7
  • Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and the mathematical model. International Journal of Mathematical Education in Science and Technology, 35(2), 197–206. https://doi.org/10.1080/00207390310001638322
  • Czarnocha, B. (2008). Ethics of teacher-researchers. In B. Czarnocha (Ed.), Handbook of mathematics teaching-research – A tool for teachers-researchers. University of Rzeszów.
  • Dubinksy, E. (2000). Mathematical literacy and abstraction in the 21st century. School Science and Mathematics, 100(6), 289-297. https://doi.org/10.1111/j.1949-8594.2000.tb17322.x
  • Erbaş, A. K., Kertil, M., Çetinkaya, B., Çakıroğlu, E., Alacacı, C., & Baş, S. (2014). Mathematical Modelling in Mathematics Education: Basic Concepts and Approaches. Educational Sciences: Theory & Practice, 14(4), 1–21. https://doi.org/10.12738/estp.2014.4.2039
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM – Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
  • Kaiser, G. (1996): Realitätsbezüge im Mathematikunterricht – Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, et al. (Eds), Materialien für einen realitätsbezogenen Mathematikunterricht (pp. 66 – 84). Franzbecker.
  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Beispiele und Erfahrungen. Journal für Mathematik-Didaktik, 31(1), 51–76. https://doi.org/10.1007/s13138-010-0001-3
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM – The International Journal on Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/s11858-006-0031-x
  • Kapur, J. N. (1982). The art of teaching the art of mathematical modelling. International Journal of Mathematical Education in Science and Technology, 13(2), 185–192. https://doi.org/10.1080/0020739820130210
  • Langman, C.N., Zawojewski, J.S., & Whitney, S.R. (2016). Five Principles for Supporting Design Activity. In Annetta, L., Minogue, J. (eds) Connecting Science and Engineering Education Practices in Meaningful Ways. Contemporary Trends and Issues in Science Education, (pp. 59–105). Springer. https://doi.org/10.1007/978-3-319-16399-4_4
  • Lesh, R.A., & Doerr, H.M. (2003). Beyond Constructivism: Models and Modelling Perspectives on Mathematics Problem Solving, Learning, and Teaching (1st ed.). Routledge. https://doi.org/10.4324/9781410607713
  • Maaß, K. (2006). What are modelling skills? ZDM – Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • McClintock, C., & Greene, J. (1985). Triangulation in practice. Evaluation and Program Planning, 8(4), 351–357. https://doi.org/10.1016/0149-7189(85)90032-1
  • Ministry of National Education (MoNE) (2024). Ortaokul Matematik Dersi Öğretim Programı [Middle School Mathematics Curriculum]. Turkish Ministry of National Education Publishing. https://tymm.meb.gov.tr/ogretim-programlari/ortaokul-matematik-dersi
  • Mohd Saad, M. R., Mamat, S., Hidayat, R., & Othman, A. J. (2023). Integrating Technology-Based Instruction and Mathematical Modelling for STEAM-Based Language Learning. International Journal of Interactive Mobile Technologies, 17(14), 55-80. https://doi.org/10.3991/ijim.v17i14.39477
  • Oktaç, A., Trigueros, M., & Romo, A. (2019). APOS Theory. For the learning of mathematics, 39(1), 33-37. https://www.jstor.org/stable/26742010
  • Schukajlow, S., & Krug, A. (2014). Are interest and enjoyment important for students’ performance and experiences in mathematical modelling? . In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 129-136). Vancouver, Canada: PME.
  • Steffe, L. P. (1991). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82. https://doi.org/10.1016/1041-6080(91)90004-K
  • Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2012). Teaching experiment methodology underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.) Handbook of research design in mathematics and science education (pp. 267-306). Routledge. https://doi.org/10.4324/9781410602725
  • Stillman, G.A. (2015). Applications and Modelling Research in Secondary Classrooms: What Have We Learnt?. In S. Cho (Eds.) Selected Regular Lectures from the 12th International Congress on Mathematical Education. (pp. 791–805) Springer, Cham. https://doi.org/10.1007/978-3-319-17187-6_44
  • Strom, R. D., & Strom, P. S. (2002). Changing the rules: Education for creative thinking. The Journal of creative behavior, 36(3), 183-200. https://doi.org/10.1002/j.2162-6057.2002.tb01063.x
  • Tekin-Dede, A., & Bukova-Güzel, E. (2016). Modelleme Etkinliklerinin Öğretimde Kullanımı [Use of Modelling Activities in Instruction]. In E. B. Güzel et al. (Eds). Matematik eğitiminde matematiksel modelleme [Mathematical Modelling in Mathematics Education] (pp. 45-83). Pegem
  • Tekin-Dede, A., & Bukova-Güzel, E. (2018). A Rubric Development Study for the Assessment of Modelling Skills. The Mathematics Educator, 27(2), 33-72. https://doi.org/10.63301/tme.v27i2.2040
  • Trigueros, M., & Oktaç, A. (2019). Task design in APOS Theory. Avances de Investigación en Educación Matemática, (15). https://documat.unirioja.es/descarga/articulo/7331817.pdf
  • Vogelsanger-Holenstein, M., Schukajlow, S., & Bruckmaier, G. (2025). Mathematical modelling and self-efficacy: Immediate and long-lasting effects of teaching mathematical modelling with a solution plan. ZDM – Mathematics Education, 57(2), 489–502. https://doi.org/10.1007/s11858-025-01674-3
  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28. https://doi.org/10.1080/14926150902817381
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research design in social sciences] (6th edition). Seçkin Publishing

Yıl 2025, Cilt: 14 Sayı: 5, 2697 - 2722, 31.12.2025
https://doi.org/10.15869/itobiad.1743272

Öz

Kaynakça

  • Arnon, I., Cottrill, J., Dubinsky, E. D., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education, Springer New York. https://doi.org/10.1007/978-1-4614-7966-6
  • Blomhøj, M., & Jensen, T. H. (2006). What’s all the fuss about skills? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). Springer.
  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht – Trends und Perspektiven. – In Kadunz, G. et al. (Eds). Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik (pp. 15-38) Wien: Hölder-Pichler-Tempsky.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58. https://doi.org/10.1007/978-3-319-12688-3_9
  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12) (pp. 222–231). Springer.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM – Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo Ferri, R. (2010). Modelling for life: Meaningful modelling activities in mathematics education. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modelling students’ mathematical modelling skills (pp. 297–308). Springer.
  • Bukova Güzel, E., Tekin Dede, A., Hıdıroğlu, Ç.N., Kula Ünver, S. ve Özaltun Çelik, A. (2018). Matematiksel modellemeye giriş [Introduction to mathematical modelling]. In E. Bukova Güzel (Eds.), Matematik eğitiminde matematiksel modelleme [Mathematical modelling in mathematics education] (pp.1-16). Ankara: Anı Publishing.
  • Cevikbas, M., Kaiser, G., & Schukajlow, S. (2024). Trends in mathematics education and insights from a meta-review and bibliometric analysis of review studies. ZDM–Mathematics Education, 56(2), 165-188. https://doi.org/10.1007/s11858-024-01587-7
  • Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and the mathematical model. International Journal of Mathematical Education in Science and Technology, 35(2), 197–206. https://doi.org/10.1080/00207390310001638322
  • Czarnocha, B. (2008). Ethics of teacher-researchers. In B. Czarnocha (Ed.), Handbook of mathematics teaching-research – A tool for teachers-researchers. University of Rzeszów.
  • Dubinksy, E. (2000). Mathematical literacy and abstraction in the 21st century. School Science and Mathematics, 100(6), 289-297. https://doi.org/10.1111/j.1949-8594.2000.tb17322.x
  • Erbaş, A. K., Kertil, M., Çetinkaya, B., Çakıroğlu, E., Alacacı, C., & Baş, S. (2014). Mathematical Modelling in Mathematics Education: Basic Concepts and Approaches. Educational Sciences: Theory & Practice, 14(4), 1–21. https://doi.org/10.12738/estp.2014.4.2039
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM – Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
  • Kaiser, G. (1996): Realitätsbezüge im Mathematikunterricht – Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, et al. (Eds), Materialien für einen realitätsbezogenen Mathematikunterricht (pp. 66 – 84). Franzbecker.
  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Beispiele und Erfahrungen. Journal für Mathematik-Didaktik, 31(1), 51–76. https://doi.org/10.1007/s13138-010-0001-3
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM – The International Journal on Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/s11858-006-0031-x
  • Kapur, J. N. (1982). The art of teaching the art of mathematical modelling. International Journal of Mathematical Education in Science and Technology, 13(2), 185–192. https://doi.org/10.1080/0020739820130210
  • Langman, C.N., Zawojewski, J.S., & Whitney, S.R. (2016). Five Principles for Supporting Design Activity. In Annetta, L., Minogue, J. (eds) Connecting Science and Engineering Education Practices in Meaningful Ways. Contemporary Trends and Issues in Science Education, (pp. 59–105). Springer. https://doi.org/10.1007/978-3-319-16399-4_4
  • Lesh, R.A., & Doerr, H.M. (2003). Beyond Constructivism: Models and Modelling Perspectives on Mathematics Problem Solving, Learning, and Teaching (1st ed.). Routledge. https://doi.org/10.4324/9781410607713
  • Maaß, K. (2006). What are modelling skills? ZDM – Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • McClintock, C., & Greene, J. (1985). Triangulation in practice. Evaluation and Program Planning, 8(4), 351–357. https://doi.org/10.1016/0149-7189(85)90032-1
  • Ministry of National Education (MoNE) (2024). Ortaokul Matematik Dersi Öğretim Programı [Middle School Mathematics Curriculum]. Turkish Ministry of National Education Publishing. https://tymm.meb.gov.tr/ogretim-programlari/ortaokul-matematik-dersi
  • Mohd Saad, M. R., Mamat, S., Hidayat, R., & Othman, A. J. (2023). Integrating Technology-Based Instruction and Mathematical Modelling for STEAM-Based Language Learning. International Journal of Interactive Mobile Technologies, 17(14), 55-80. https://doi.org/10.3991/ijim.v17i14.39477
  • Oktaç, A., Trigueros, M., & Romo, A. (2019). APOS Theory. For the learning of mathematics, 39(1), 33-37. https://www.jstor.org/stable/26742010
  • Schukajlow, S., & Krug, A. (2014). Are interest and enjoyment important for students’ performance and experiences in mathematical modelling? . In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 129-136). Vancouver, Canada: PME.
  • Steffe, L. P. (1991). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82. https://doi.org/10.1016/1041-6080(91)90004-K
  • Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2012). Teaching experiment methodology underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.) Handbook of research design in mathematics and science education (pp. 267-306). Routledge. https://doi.org/10.4324/9781410602725
  • Stillman, G.A. (2015). Applications and Modelling Research in Secondary Classrooms: What Have We Learnt?. In S. Cho (Eds.) Selected Regular Lectures from the 12th International Congress on Mathematical Education. (pp. 791–805) Springer, Cham. https://doi.org/10.1007/978-3-319-17187-6_44
  • Strom, R. D., & Strom, P. S. (2002). Changing the rules: Education for creative thinking. The Journal of creative behavior, 36(3), 183-200. https://doi.org/10.1002/j.2162-6057.2002.tb01063.x
  • Tekin-Dede, A., & Bukova-Güzel, E. (2016). Modelleme Etkinliklerinin Öğretimde Kullanımı [Use of Modelling Activities in Instruction]. In E. B. Güzel et al. (Eds). Matematik eğitiminde matematiksel modelleme [Mathematical Modelling in Mathematics Education] (pp. 45-83). Pegem
  • Tekin-Dede, A., & Bukova-Güzel, E. (2018). A Rubric Development Study for the Assessment of Modelling Skills. The Mathematics Educator, 27(2), 33-72. https://doi.org/10.63301/tme.v27i2.2040
  • Trigueros, M., & Oktaç, A. (2019). Task design in APOS Theory. Avances de Investigación en Educación Matemática, (15). https://documat.unirioja.es/descarga/articulo/7331817.pdf
  • Vogelsanger-Holenstein, M., Schukajlow, S., & Bruckmaier, G. (2025). Mathematical modelling and self-efficacy: Immediate and long-lasting effects of teaching mathematical modelling with a solution plan. ZDM – Mathematics Education, 57(2), 489–502. https://doi.org/10.1007/s11858-025-01674-3
  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28. https://doi.org/10.1080/14926150902817381
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research design in social sciences] (6th edition). Seçkin Publishing

Investigation de la contribution de l’enseignement de la modélisation mathématique conçu sur la base de ACE aux compétences en modélisation des élèves du Baccalauréat International à la lumière de la théorie APOS

Yıl 2025, Cilt: 14 Sayı: 5, 2697 - 2722, 31.12.2025
https://doi.org/10.15869/itobiad.1743272

Öz

Cette étude vise à examiner l’efficacité d’un programme d’enseignement structuré selon la théorie APOS pour améliorer les compétences en modélisation mathématique des élèves du secondaire. La recherche se concentre particulièrement sur les deux premières phases du processus de modélisation : la compréhension du problème et sa simplification. L’étude a été conçue comme une expérience d’enseignement et menée au cours de l’année scolaire 2022–2023 auprès de 12 élèves inscrits au programme du Baccalauréat International (IB) dans un lycée religieux à Bursa, en Turquie. Au cours du processus de recherche, une décomposition génétique du concept de modélisation mathématique a été élaborée sur la base d’une revue de littérature et d’une étude pilote. Par la suite, un programme d’enseignement d’environ 14 à 18 heures de cours a été conçu et mis en œuvre en s’appuyant sur le cycle d’instruction ACE (Action–Process–Object–Schema). Les activités du programme visaient à guider les élèves à travers des processus cognitifs de haut niveau tels que l’analyse de problèmes de la vie réelle, l’identification des variables clés, la formulation d’hypothèses réalistes et la construction de représentations mathématiques. Les données ont été collectées à l’aide de tâches de modélisation ouvertes (pré-test, post-test, test de rétention), de notes d’observation du chercheur, de transcriptions d’entretiens cliniques et de journaux de cours détaillés. Les données ont été analysées par analyse descriptive. Les résultats ont révélé que les élèves avaient des lacunes importantes dans la compréhension du contexte des problèmes avant l’implémentation ; cependant, ils ont démontré des performances de haut niveau dans cette compétence à la fin de l’enseignement et notamment lors du test de rétention. En ce qui concerne la simplification du problème, les élèves étaient initialement à un niveau de compétence de base, mais après le programme, ils ont présenté des stratégies plus détaillées et bien justifiées. Les résultats de l’étude sont cohérents avec les recherches antérieures démontrant l’efficacité des programmes d’enseignement structurés pour développer les compétences en modélisation des élèves. De plus, l’étude apporte une contribution théorique et pratique originale à la littérature en intégrant la théorie APOS à l’enseignement de la modélisation mathématique.

Kaynakça

  • Arnon, I., Cottrill, J., Dubinsky, E. D., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education, Springer New York. https://doi.org/10.1007/978-1-4614-7966-6
  • Blomhøj, M., & Jensen, T. H. (2006). What’s all the fuss about skills? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). Springer.
  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht – Trends und Perspektiven. – In Kadunz, G. et al. (Eds). Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik (pp. 15-38) Wien: Hölder-Pichler-Tempsky.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58. https://doi.org/10.1007/978-3-319-12688-3_9
  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12) (pp. 222–231). Springer.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM – Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo Ferri, R. (2010). Modelling for life: Meaningful modelling activities in mathematics education. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modelling students’ mathematical modelling skills (pp. 297–308). Springer.
  • Bukova Güzel, E., Tekin Dede, A., Hıdıroğlu, Ç.N., Kula Ünver, S. ve Özaltun Çelik, A. (2018). Matematiksel modellemeye giriş [Introduction to mathematical modelling]. In E. Bukova Güzel (Eds.), Matematik eğitiminde matematiksel modelleme [Mathematical modelling in mathematics education] (pp.1-16). Ankara: Anı Publishing.
  • Cevikbas, M., Kaiser, G., & Schukajlow, S. (2024). Trends in mathematics education and insights from a meta-review and bibliometric analysis of review studies. ZDM–Mathematics Education, 56(2), 165-188. https://doi.org/10.1007/s11858-024-01587-7
  • Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and the mathematical model. International Journal of Mathematical Education in Science and Technology, 35(2), 197–206. https://doi.org/10.1080/00207390310001638322
  • Czarnocha, B. (2008). Ethics of teacher-researchers. In B. Czarnocha (Ed.), Handbook of mathematics teaching-research – A tool for teachers-researchers. University of Rzeszów.
  • Dubinksy, E. (2000). Mathematical literacy and abstraction in the 21st century. School Science and Mathematics, 100(6), 289-297. https://doi.org/10.1111/j.1949-8594.2000.tb17322.x
  • Erbaş, A. K., Kertil, M., Çetinkaya, B., Çakıroğlu, E., Alacacı, C., & Baş, S. (2014). Mathematical Modelling in Mathematics Education: Basic Concepts and Approaches. Educational Sciences: Theory & Practice, 14(4), 1–21. https://doi.org/10.12738/estp.2014.4.2039
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM – Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
  • Kaiser, G. (1996): Realitätsbezüge im Mathematikunterricht – Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, et al. (Eds), Materialien für einen realitätsbezogenen Mathematikunterricht (pp. 66 – 84). Franzbecker.
  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Beispiele und Erfahrungen. Journal für Mathematik-Didaktik, 31(1), 51–76. https://doi.org/10.1007/s13138-010-0001-3
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM – The International Journal on Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/s11858-006-0031-x
  • Kapur, J. N. (1982). The art of teaching the art of mathematical modelling. International Journal of Mathematical Education in Science and Technology, 13(2), 185–192. https://doi.org/10.1080/0020739820130210
  • Langman, C.N., Zawojewski, J.S., & Whitney, S.R. (2016). Five Principles for Supporting Design Activity. In Annetta, L., Minogue, J. (eds) Connecting Science and Engineering Education Practices in Meaningful Ways. Contemporary Trends and Issues in Science Education, (pp. 59–105). Springer. https://doi.org/10.1007/978-3-319-16399-4_4
  • Lesh, R.A., & Doerr, H.M. (2003). Beyond Constructivism: Models and Modelling Perspectives on Mathematics Problem Solving, Learning, and Teaching (1st ed.). Routledge. https://doi.org/10.4324/9781410607713
  • Maaß, K. (2006). What are modelling skills? ZDM – Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • McClintock, C., & Greene, J. (1985). Triangulation in practice. Evaluation and Program Planning, 8(4), 351–357. https://doi.org/10.1016/0149-7189(85)90032-1
  • Ministry of National Education (MoNE) (2024). Ortaokul Matematik Dersi Öğretim Programı [Middle School Mathematics Curriculum]. Turkish Ministry of National Education Publishing. https://tymm.meb.gov.tr/ogretim-programlari/ortaokul-matematik-dersi
  • Mohd Saad, M. R., Mamat, S., Hidayat, R., & Othman, A. J. (2023). Integrating Technology-Based Instruction and Mathematical Modelling for STEAM-Based Language Learning. International Journal of Interactive Mobile Technologies, 17(14), 55-80. https://doi.org/10.3991/ijim.v17i14.39477
  • Oktaç, A., Trigueros, M., & Romo, A. (2019). APOS Theory. For the learning of mathematics, 39(1), 33-37. https://www.jstor.org/stable/26742010
  • Schukajlow, S., & Krug, A. (2014). Are interest and enjoyment important for students’ performance and experiences in mathematical modelling? . In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 129-136). Vancouver, Canada: PME.
  • Steffe, L. P. (1991). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82. https://doi.org/10.1016/1041-6080(91)90004-K
  • Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2012). Teaching experiment methodology underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.) Handbook of research design in mathematics and science education (pp. 267-306). Routledge. https://doi.org/10.4324/9781410602725
  • Stillman, G.A. (2015). Applications and Modelling Research in Secondary Classrooms: What Have We Learnt?. In S. Cho (Eds.) Selected Regular Lectures from the 12th International Congress on Mathematical Education. (pp. 791–805) Springer, Cham. https://doi.org/10.1007/978-3-319-17187-6_44
  • Strom, R. D., & Strom, P. S. (2002). Changing the rules: Education for creative thinking. The Journal of creative behavior, 36(3), 183-200. https://doi.org/10.1002/j.2162-6057.2002.tb01063.x
  • Tekin-Dede, A., & Bukova-Güzel, E. (2016). Modelleme Etkinliklerinin Öğretimde Kullanımı [Use of Modelling Activities in Instruction]. In E. B. Güzel et al. (Eds). Matematik eğitiminde matematiksel modelleme [Mathematical Modelling in Mathematics Education] (pp. 45-83). Pegem
  • Tekin-Dede, A., & Bukova-Güzel, E. (2018). A Rubric Development Study for the Assessment of Modelling Skills. The Mathematics Educator, 27(2), 33-72. https://doi.org/10.63301/tme.v27i2.2040
  • Trigueros, M., & Oktaç, A. (2019). Task design in APOS Theory. Avances de Investigación en Educación Matemática, (15). https://documat.unirioja.es/descarga/articulo/7331817.pdf
  • Vogelsanger-Holenstein, M., Schukajlow, S., & Bruckmaier, G. (2025). Mathematical modelling and self-efficacy: Immediate and long-lasting effects of teaching mathematical modelling with a solution plan. ZDM – Mathematics Education, 57(2), 489–502. https://doi.org/10.1007/s11858-025-01674-3
  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28. https://doi.org/10.1080/14926150902817381
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research design in social sciences] (6th edition). Seçkin Publishing

Investigation of the Contribution of ACE Based Designed Mathematical Modelling Instruction to the Modelling Skills of International Baccalaureate Students in the Light of APOS Theory

Yıl 2025, Cilt: 14 Sayı: 5, 2697 - 2722, 31.12.2025
https://doi.org/10.15869/itobiad.1743272

Öz

This qualitative study was conducted to investigate the contribution of an instructional program structured on the APOS theory to improve high school students' mathematical modelling skills. The research focused on the first two phases of the modelling process namely, understanding the problem and simplifying the problem. The study was designed as a teaching experiment and conducted during the 2022–2023 academic year with 12 students registered in the International Baccalaureate program at a religious high school in Bursa, Turkey. During the research process, the genetic decomposition of the concept of mathematical modelling was developed based on the literature review and the pilot implementation. Afterwards, a teaching program consisting of approximately 14 to 18 class hours was designed and implemented based on the ACE (Activities, Classroom Discussions, Exercises) instructional cycle. The activities in the program were designed at the of guiding students through higher-order mental processes such as analysing real-life problems, identifying key variables, formulating realistic assumptions, and constructing mathematical representations. Data were collected through open-ended modelling tasks, researcher observation notes, transcripts of clinical interviews, and detailed lesson journals. The data were analysed using descriptive analysis. The findings revealed that students were considerably insufficient in understanding problem contexts before the implementation; however, they demonstrated high-level performance in this skill by the end of the instruction and especially in the retention test. In terms of simplifying the problem, students were initially at a basic proficiency level, but after the program, they exhibited more detailed and well-justified strategies. The results of the study are consistent with prior research demonstrating the effectiveness of structured instructional programs in developing students' modelling abilities. Moreover, the study provides a contribution to the literature by integrating APOS theory with the teaching of mathematical modelling.

Kaynakça

  • Arnon, I., Cottrill, J., Dubinsky, E. D., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education, Springer New York. https://doi.org/10.1007/978-1-4614-7966-6
  • Blomhøj, M., & Jensen, T. H. (2006). What’s all the fuss about skills? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). Springer.
  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht – Trends und Perspektiven. – In Kadunz, G. et al. (Eds). Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik (pp. 15-38) Wien: Hölder-Pichler-Tempsky.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58. https://doi.org/10.1007/978-3-319-12688-3_9
  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12) (pp. 222–231). Springer.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM – Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo Ferri, R. (2010). Modelling for life: Meaningful modelling activities in mathematics education. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modelling students’ mathematical modelling skills (pp. 297–308). Springer.
  • Bukova Güzel, E., Tekin Dede, A., Hıdıroğlu, Ç.N., Kula Ünver, S. ve Özaltun Çelik, A. (2018). Matematiksel modellemeye giriş [Introduction to mathematical modelling]. In E. Bukova Güzel (Eds.), Matematik eğitiminde matematiksel modelleme [Mathematical modelling in mathematics education] (pp.1-16). Ankara: Anı Publishing.
  • Cevikbas, M., Kaiser, G., & Schukajlow, S. (2024). Trends in mathematics education and insights from a meta-review and bibliometric analysis of review studies. ZDM–Mathematics Education, 56(2), 165-188. https://doi.org/10.1007/s11858-024-01587-7
  • Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and the mathematical model. International Journal of Mathematical Education in Science and Technology, 35(2), 197–206. https://doi.org/10.1080/00207390310001638322
  • Czarnocha, B. (2008). Ethics of teacher-researchers. In B. Czarnocha (Ed.), Handbook of mathematics teaching-research – A tool for teachers-researchers. University of Rzeszów.
  • Dubinksy, E. (2000). Mathematical literacy and abstraction in the 21st century. School Science and Mathematics, 100(6), 289-297. https://doi.org/10.1111/j.1949-8594.2000.tb17322.x
  • Erbaş, A. K., Kertil, M., Çetinkaya, B., Çakıroğlu, E., Alacacı, C., & Baş, S. (2014). Mathematical Modelling in Mathematics Education: Basic Concepts and Approaches. Educational Sciences: Theory & Practice, 14(4), 1–21. https://doi.org/10.12738/estp.2014.4.2039
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM – Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
  • Kaiser, G. (1996): Realitätsbezüge im Mathematikunterricht – Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, et al. (Eds), Materialien für einen realitätsbezogenen Mathematikunterricht (pp. 66 – 84). Franzbecker.
  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Beispiele und Erfahrungen. Journal für Mathematik-Didaktik, 31(1), 51–76. https://doi.org/10.1007/s13138-010-0001-3
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM – The International Journal on Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/s11858-006-0031-x
  • Kapur, J. N. (1982). The art of teaching the art of mathematical modelling. International Journal of Mathematical Education in Science and Technology, 13(2), 185–192. https://doi.org/10.1080/0020739820130210
  • Langman, C.N., Zawojewski, J.S., & Whitney, S.R. (2016). Five Principles for Supporting Design Activity. In Annetta, L., Minogue, J. (eds) Connecting Science and Engineering Education Practices in Meaningful Ways. Contemporary Trends and Issues in Science Education, (pp. 59–105). Springer. https://doi.org/10.1007/978-3-319-16399-4_4
  • Lesh, R.A., & Doerr, H.M. (2003). Beyond Constructivism: Models and Modelling Perspectives on Mathematics Problem Solving, Learning, and Teaching (1st ed.). Routledge. https://doi.org/10.4324/9781410607713
  • Maaß, K. (2006). What are modelling skills? ZDM – Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • McClintock, C., & Greene, J. (1985). Triangulation in practice. Evaluation and Program Planning, 8(4), 351–357. https://doi.org/10.1016/0149-7189(85)90032-1
  • Ministry of National Education (MoNE) (2024). Ortaokul Matematik Dersi Öğretim Programı [Middle School Mathematics Curriculum]. Turkish Ministry of National Education Publishing. https://tymm.meb.gov.tr/ogretim-programlari/ortaokul-matematik-dersi
  • Mohd Saad, M. R., Mamat, S., Hidayat, R., & Othman, A. J. (2023). Integrating Technology-Based Instruction and Mathematical Modelling for STEAM-Based Language Learning. International Journal of Interactive Mobile Technologies, 17(14), 55-80. https://doi.org/10.3991/ijim.v17i14.39477
  • Oktaç, A., Trigueros, M., & Romo, A. (2019). APOS Theory. For the learning of mathematics, 39(1), 33-37. https://www.jstor.org/stable/26742010
  • Schukajlow, S., & Krug, A. (2014). Are interest and enjoyment important for students’ performance and experiences in mathematical modelling? . In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 129-136). Vancouver, Canada: PME.
  • Steffe, L. P. (1991). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82. https://doi.org/10.1016/1041-6080(91)90004-K
  • Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2012). Teaching experiment methodology underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.) Handbook of research design in mathematics and science education (pp. 267-306). Routledge. https://doi.org/10.4324/9781410602725
  • Stillman, G.A. (2015). Applications and Modelling Research in Secondary Classrooms: What Have We Learnt?. In S. Cho (Eds.) Selected Regular Lectures from the 12th International Congress on Mathematical Education. (pp. 791–805) Springer, Cham. https://doi.org/10.1007/978-3-319-17187-6_44
  • Strom, R. D., & Strom, P. S. (2002). Changing the rules: Education for creative thinking. The Journal of creative behavior, 36(3), 183-200. https://doi.org/10.1002/j.2162-6057.2002.tb01063.x
  • Tekin-Dede, A., & Bukova-Güzel, E. (2016). Modelleme Etkinliklerinin Öğretimde Kullanımı [Use of Modelling Activities in Instruction]. In E. B. Güzel et al. (Eds). Matematik eğitiminde matematiksel modelleme [Mathematical Modelling in Mathematics Education] (pp. 45-83). Pegem
  • Tekin-Dede, A., & Bukova-Güzel, E. (2018). A Rubric Development Study for the Assessment of Modelling Skills. The Mathematics Educator, 27(2), 33-72. https://doi.org/10.63301/tme.v27i2.2040
  • Trigueros, M., & Oktaç, A. (2019). Task design in APOS Theory. Avances de Investigación en Educación Matemática, (15). https://documat.unirioja.es/descarga/articulo/7331817.pdf
  • Vogelsanger-Holenstein, M., Schukajlow, S., & Bruckmaier, G. (2025). Mathematical modelling and self-efficacy: Immediate and long-lasting effects of teaching mathematical modelling with a solution plan. ZDM – Mathematics Education, 57(2), 489–502. https://doi.org/10.1007/s11858-025-01674-3
  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28. https://doi.org/10.1080/14926150902817381
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research design in social sciences] (6th edition). Seçkin Publishing

ACE Kapsamında Tasarlanan Matematiksel Modelleme Eğitiminin, Uluslararası Bakalorya Öğrencilerinin Modelleme Becerilerine Katkısının APOS Teorisi Işığında İncelenmesi

Yıl 2025, Cilt: 14 Sayı: 5, 2697 - 2722, 31.12.2025
https://doi.org/10.15869/itobiad.1743272

Öz

Bu araştırma, lise düzeyindeki öğrencilerin matematiksel modelleme becerilerini geliştirmek amacıyla APOS teorisini temel alan bir öğretim programının katkılarını incelemeyi amaçlamaktadır. Çalışma, matematiksel modelleme sürecinin ilk iki basamağı olan “problemi anlama” ve “problemi sadeleştirme” yeterliklerine odaklanmaktadır. Araştırma deseni olarak öğretim deneyi tercih edilmiş ve 2022–2023 eğitim-öğretim yılında Bursa ilinde bir imam hatip lisesinde öğrenim gören Uluslararası Bakalorya programına dahil olan 12 öğrenci çalışma grubunu oluşturmuştur. Araştırma sürecinde öncelikle literatür taramasına ve pilot uygulamaya dayalı olarak matematiksel modelleme kavramının genetik çözümlemesi yapılmış, ardından ACE (Activities, Classroom Discussions, Exercises) öğretim döngüsü esas alınarak yaklaşık 14–18 ders saatinden oluşan bir öğretim programı tasarlanmış ve uygulanmıştır. Geliştirilen etkinlikler, öğrencilerin gerçek yaşam problemlerini analiz etme, önemli değişkenleri ayırt etme, gerçekçi varsayımlar oluşturma ve matematiksel temsiller geliştirme gibi üst düzey bilişsel süreçlere yönlendirilmesini hedeflemiştir. Veriler; açık uçlu modelleme etkinlik kağıtları, araştırmacı gözlem notları, klinik görüşme dökümleri ve ayrıntılı ders günlüklerinden elde edilmiştir. Veriler betimleyici analiz yöntemiyle değerlendirilmiştir. Bulgular, öğrencilerin uygulama öncesinde problem durumu anlama konusunda oldukça yetersiz olduklarını, ancak öğretim süreci sonunda ve özellikle kalıcılık testi sürecinde bu becerilerde üst düzey performans sergilediklerini ortaya koymuştur. Problemi sadeleştirme açısından ise öğrenciler uygulama öncesinde temel düzeyde yeterli bulunmuş, öğretim sonrasındaysa bu beceriyi daha ayrıntılı ve gerekçelendirilmiş biçimde ortaya koymuşlardır. Çalışmanın bulguları, yapılandırılmış öğretim programlarının modelleme becerilerinin gelişiminde etkili olduğunu gösteren araştırmalarla tutarlılık göstermektedir. Çalışma, matematiksel modelleme öğretimi ile APOS teorisini bir araya getirerek literatüre teorik ve uygulamalı bir katkı sunmaktadır.

Kaynakça

  • Arnon, I., Cottrill, J., Dubinsky, E. D., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education, Springer New York. https://doi.org/10.1007/978-1-4614-7966-6
  • Blomhøj, M., & Jensen, T. H. (2006). What’s all the fuss about skills? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). Springer.
  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht – Trends und Perspektiven. – In Kadunz, G. et al. (Eds). Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik (pp. 15-38) Wien: Hölder-Pichler-Tempsky.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58. https://doi.org/10.1007/978-3-319-12688-3_9
  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12) (pp. 222–231). Springer.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM – Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo Ferri, R. (2010). Modelling for life: Meaningful modelling activities in mathematics education. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modelling students’ mathematical modelling skills (pp. 297–308). Springer.
  • Bukova Güzel, E., Tekin Dede, A., Hıdıroğlu, Ç.N., Kula Ünver, S. ve Özaltun Çelik, A. (2018). Matematiksel modellemeye giriş [Introduction to mathematical modelling]. In E. Bukova Güzel (Eds.), Matematik eğitiminde matematiksel modelleme [Mathematical modelling in mathematics education] (pp.1-16). Ankara: Anı Publishing.
  • Cevikbas, M., Kaiser, G., & Schukajlow, S. (2024). Trends in mathematics education and insights from a meta-review and bibliometric analysis of review studies. ZDM–Mathematics Education, 56(2), 165-188. https://doi.org/10.1007/s11858-024-01587-7
  • Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and the mathematical model. International Journal of Mathematical Education in Science and Technology, 35(2), 197–206. https://doi.org/10.1080/00207390310001638322
  • Czarnocha, B. (2008). Ethics of teacher-researchers. In B. Czarnocha (Ed.), Handbook of mathematics teaching-research – A tool for teachers-researchers. University of Rzeszów.
  • Dubinksy, E. (2000). Mathematical literacy and abstraction in the 21st century. School Science and Mathematics, 100(6), 289-297. https://doi.org/10.1111/j.1949-8594.2000.tb17322.x
  • Erbaş, A. K., Kertil, M., Çetinkaya, B., Çakıroğlu, E., Alacacı, C., & Baş, S. (2014). Mathematical Modelling in Mathematics Education: Basic Concepts and Approaches. Educational Sciences: Theory & Practice, 14(4), 1–21. https://doi.org/10.12738/estp.2014.4.2039
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM – Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
  • Kaiser, G. (1996): Realitätsbezüge im Mathematikunterricht – Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, et al. (Eds), Materialien für einen realitätsbezogenen Mathematikunterricht (pp. 66 – 84). Franzbecker.
  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Beispiele und Erfahrungen. Journal für Mathematik-Didaktik, 31(1), 51–76. https://doi.org/10.1007/s13138-010-0001-3
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM – The International Journal on Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/s11858-006-0031-x
  • Kapur, J. N. (1982). The art of teaching the art of mathematical modelling. International Journal of Mathematical Education in Science and Technology, 13(2), 185–192. https://doi.org/10.1080/0020739820130210
  • Langman, C.N., Zawojewski, J.S., & Whitney, S.R. (2016). Five Principles for Supporting Design Activity. In Annetta, L., Minogue, J. (eds) Connecting Science and Engineering Education Practices in Meaningful Ways. Contemporary Trends and Issues in Science Education, (pp. 59–105). Springer. https://doi.org/10.1007/978-3-319-16399-4_4
  • Lesh, R.A., & Doerr, H.M. (2003). Beyond Constructivism: Models and Modelling Perspectives on Mathematics Problem Solving, Learning, and Teaching (1st ed.). Routledge. https://doi.org/10.4324/9781410607713
  • Maaß, K. (2006). What are modelling skills? ZDM – Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • McClintock, C., & Greene, J. (1985). Triangulation in practice. Evaluation and Program Planning, 8(4), 351–357. https://doi.org/10.1016/0149-7189(85)90032-1
  • Ministry of National Education (MoNE) (2024). Ortaokul Matematik Dersi Öğretim Programı [Middle School Mathematics Curriculum]. Turkish Ministry of National Education Publishing. https://tymm.meb.gov.tr/ogretim-programlari/ortaokul-matematik-dersi
  • Mohd Saad, M. R., Mamat, S., Hidayat, R., & Othman, A. J. (2023). Integrating Technology-Based Instruction and Mathematical Modelling for STEAM-Based Language Learning. International Journal of Interactive Mobile Technologies, 17(14), 55-80. https://doi.org/10.3991/ijim.v17i14.39477
  • Oktaç, A., Trigueros, M., & Romo, A. (2019). APOS Theory. For the learning of mathematics, 39(1), 33-37. https://www.jstor.org/stable/26742010
  • Schukajlow, S., & Krug, A. (2014). Are interest and enjoyment important for students’ performance and experiences in mathematical modelling? . In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 129-136). Vancouver, Canada: PME.
  • Steffe, L. P. (1991). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82. https://doi.org/10.1016/1041-6080(91)90004-K
  • Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2012). Teaching experiment methodology underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.) Handbook of research design in mathematics and science education (pp. 267-306). Routledge. https://doi.org/10.4324/9781410602725
  • Stillman, G.A. (2015). Applications and Modelling Research in Secondary Classrooms: What Have We Learnt?. In S. Cho (Eds.) Selected Regular Lectures from the 12th International Congress on Mathematical Education. (pp. 791–805) Springer, Cham. https://doi.org/10.1007/978-3-319-17187-6_44
  • Strom, R. D., & Strom, P. S. (2002). Changing the rules: Education for creative thinking. The Journal of creative behavior, 36(3), 183-200. https://doi.org/10.1002/j.2162-6057.2002.tb01063.x
  • Tekin-Dede, A., & Bukova-Güzel, E. (2016). Modelleme Etkinliklerinin Öğretimde Kullanımı [Use of Modelling Activities in Instruction]. In E. B. Güzel et al. (Eds). Matematik eğitiminde matematiksel modelleme [Mathematical Modelling in Mathematics Education] (pp. 45-83). Pegem
  • Tekin-Dede, A., & Bukova-Güzel, E. (2018). A Rubric Development Study for the Assessment of Modelling Skills. The Mathematics Educator, 27(2), 33-72. https://doi.org/10.63301/tme.v27i2.2040
  • Trigueros, M., & Oktaç, A. (2019). Task design in APOS Theory. Avances de Investigación en Educación Matemática, (15). https://documat.unirioja.es/descarga/articulo/7331817.pdf
  • Vogelsanger-Holenstein, M., Schukajlow, S., & Bruckmaier, G. (2025). Mathematical modelling and self-efficacy: Immediate and long-lasting effects of teaching mathematical modelling with a solution plan. ZDM – Mathematics Education, 57(2), 489–502. https://doi.org/10.1007/s11858-025-01674-3
  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28. https://doi.org/10.1080/14926150902817381
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research design in social sciences] (6th edition). Seçkin Publishing
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Türkçe ve Sosyal Bilimler Eğitimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gökçe Kayhan Gencer 0000-0002-6039-4406

Menekşe Seden Tapan Broutin 0000-0002-1860-852X

Gönderilme Tarihi 17 Temmuz 2025
Kabul Tarihi 26 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 5

Kaynak Göster

APA Kayhan Gencer, G., & Tapan Broutin, M. S. (2025). Investigation of the Contribution of ACE Based Designed Mathematical Modelling Instruction to the Modelling Skills of International Baccalaureate Students in the Light of APOS Theory. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(5), 2697-2722. https://doi.org/10.15869/itobiad.1743272
İnsan ve Toplum Bilimleri Araştırmaları Dergisi  Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır. 

35894