Derleme
BibTex RIS Kaynak Göster

Farklı koşullar altında gıdalardaki uçucu organik bileşik (UOB) profil değişiminin incelenmesi

Yıl 2025, Cilt: 3 Sayı: 1, 11 - 26, 28.03.2025

Öz

Uçucu organik bileşikler (UOB'ler), birçok sektörde yaygın olarak kullanılmakta olup, uçucu organik bileşiklerin tespiti önemli ve kapsamlı bir araştırma konusu haline gelmiştir. Gıda maddeleri, bir parmak izi gibi kendine özgü ve benzersiz bir karakteristiğe sahip UOB'ler doğal olarak salgılar. Gıdalar tarafından salınan UOB bileşimi, hem aroma hem de tat üzerinde önemli bir etkiye sahip olup, bu nedenle müşteri tercihleri üzerinde hayati bir etkiye sahiptir. GC-MS ve PTR-MS tarihsel olarak UOB analizinde ana yöntemler olmasına rağmen, sensörler ve e-burunlar gibi diğer teknikler son zamanlarda UOB tespiti için alternatif seçenekler olarak gelişmiştir. UOB sensörleri, ürünlerin raf ömrünü izlemek ve bozulma belirtilerini tespit etmek için akıllı ambalaj sistemlerinde kullanılmaktadır. Yenilikçi bir perspektiften bakıldığında, UOB'lerin analizi, gıda endüstrisinde kritik bir faaliyet olan pişirme sürecine ilişkin bilgiler sağlamıştır. Pişirme süreci, malzemeler, miktar, teknikler ve parametreler gibi faktörlere bağlı olarak yüksek derecede özelleştirilebilir. UOB'lerin karmaşık bileşimi ve gıdalarda meydana gelen kimyasal süreçler, özellikle Maillard reaksiyonu dikkate alınmıştır. Bu çalışmanın amacı, pişirme süreci sırasında UOB'lerin oluşumunu kapsamlı bir şekilde incelemektir. Çalışma, tarif bileşimi, pişirme yöntemleri ve süreç parametreleri gibi unsurları dikkate alarak UOB'lerin üretimine yol açan spesifik mekanizmaları anlamayı amaçlamaktadır. Sonuçlar değişken olmakla birlikte, UOB sensörlerinin gelişmiş görüntü işleme ve yapay zeka teknolojileriyle entegrasyonunun, pişirme sürecinin izlenmesini ve otomatik olarak sonlandırılmasını kolaylaştırabileceği olasılığı bulunmaktadır.

Kaynakça

  • Aaslyng, M. D., & Meinert, L. (2017). Meat flavour in pork and beef–From animal to meal. Meat Science, 132, 112-117.
  • Aghili, N. S., Rasekh, M., Karami, H., Edriss, O., Wilson, A. D., & Ramos, J. (2023). Aromatic Fingerprints: VOC Analysis with E-Nose and GC-MS for Rapid Detection of Adulteration in Sesame Oil. Sensors, 23(14), 6294.
  • Alozie, Y. E., & Ene-Obong, H. N. (2018). Recipe standardization, nutrient composition and sensory evaluation of waterleaf (Talinum triangulare) and wild spinach (Gnetum africanum) soup “afang” commonly consumed in South-south Nigeria. Food chemistry, 238, 65-72.
  • Amaya-Farfan, J., & Rodriguez-Amaya, D. B. (2021). The Maillard reactions. In Chemical changes during processing and storage of foods (pp. 215-263). Academic Press.
  • Arora, K., Ameur, H., Polo, A., Di Cagno, R., Rizzello, C. G., & Gobbetti, M. (2021). Thirty years of knowledge on sourdough fermentation: A systematic review. Trends in Food Science & Technology, 108, 71-83.
  • Bao, G., Niu, J., Li, S., Zhang, L., & Luo, Y. (2022). Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat. Ultrasonics Sonochemistry, 82, 105864.
  • Beltrán Sanahuja, A., De Pablo Gallego, S. L., Maestre Pérez, S. E., Valdés García, A., & Prats Moya, M. S. (2019). Influence of cooking and ingredients on the antioxidant activity, phenolic content and volatile profile of different variants of the Mediterranean typical tomato Sofrito. Antioxidants, 8(11), 551.
  • Benozzi, E., Romano, A., Capozzi, V., Makhoul, S., Cappellin, L., Khomenko, I., & Biasioli, F. (2015). Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. Food Research International, 76, 682-688.
  • Bi, J., Li, Y., Yang, Z., Lin, Z., Chen, F., Liu, S., & Li, C. (2022). Effect of different cooking times on the fat flavor compounds of pork belly. Journal of Food Biochemistry, 46(8), e14184.
  • Bi, J., Lin, Z., Li, Y., Chen, F., Liu, S., & Li, C. (2021). Effects of different cooking methods on volatile flavor compounds of chicken breast. Journal of Food Biochemistry, 45(8), e13770.
  • Bi, J., Yang, Z., Li, Y., Li, B., Gao, Y., Ping, C., Li, C. (2023). Effects of different cooking methods on volatile flavor compounds in garlic. International Journal of Gastronomy and Food Science, 31, 100642.
  • Bleicher, J., Ebner, E. E., & Bak, K. H. (2022). Formation and analysis of volatile and odor compounds in meat—a review. Molecules, 27(19), 6703.
  • Boscaino, F., Cammarota, G., Ottombrino, A., Nazzaro, M., Siano, F., Volpe, M. G., & Sorrentino, A. (2017). Chemical, volatile profile and shelf life of muffin enriched with supplementation chestnut cream. Journal of Food Processing and Preservation, 41(4), e13013.
  • Bou, R., Navas, J. A., Tres, A., Codony, R., & Guardiola, F. (2012). Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers. Food Control, 27(1), 254-267.
  • Cao, Y., Wu, G., Zhang, F., Xu, L., Jin, Q., Huang, J., & Wang, X. (2020). A Comparative Study of Physicochemical and Flavor Characteristics of Chicken Nuggets during Air Frying and Deep Frying. Journal of the American Oil Chemists' Society, 97(8), 901-913.
  • Cappellin, L., Aprea, E., Granitto, P., Wehrens, R., Soukoulis, C., Viola, R., & Biasioli, F. (2012). Linking GC-MS and PTR-TOF-MS fingerprints of food samples. Chemometrics and Intelligent Laboratory Systems, 118, 301-307.
  • Casciano, F., Nissen, L., & Gianotti, A. (2021). Effect of formulations and fermentation processes on volatile organic compounds and prebiotic potential of gluten-free bread fortified by spirulina (Arthrospira platensis). Food & Function, 12(20), 10226-10238.
  • Chen, H., Li, M., Sun, J., Zhang, N., Sun, B., & Tian, H. (2018). Analysis of volatile flavor constituents of fresh garlic and fried garlic oil. Fine. Chem, 8, 1355-1362.
  • Chen, J., Tao, L., Zhang, T., Zhang, J., Wu, T., Luan, D., Zhong, J. (2021). Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS, and HS-GC-IMS. LWT, 147, 111585.
  • Cheng, Y. Q., Wang, D., Zhang, C. J., Zhu, X. C., Zhu, Z. S., Lei, Y., & Huang, M. (2022). The impact of sous vide braising on the sensory characteristics and heterocyclic amines contents of braised chicken. LWT, 172, 114176.
  • Cicolella, A. (2008). Volatile Organic Compounds (VOC): definition, classification and properties. Revue des maladies respiratoires, 25(2), 155-163.
  • Conrado, J. A. M., Sequinel, R., Dias, B. C., Silvestre, M., Batista, A. D., & Petruci, J. F. D. S. (2021). Chemical QR code: a simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chemistry, 350, 129243.
  • Da, D., Nian, Y., Shi, J., Li, Y., Zhao, D., Zhang, G., & Li, C. (2021). Characterization of specific volatile components in braised pork with different tastes by SPME‐GC/MS and electronic nose. Journal of Food Processing and Preservation, 45(5), e15492.
  • de Carvalho, N. M., Madureira, A. R., & Pintado, M. E. (2020). The potential of insects as food sources–a review. Critical reviews in food science and nutrition, 60(21), 3642-3652.
  • De Luca, L., Aiello, A., Pizzolongo, F., Blaiotta, G., Aponte, M., & Romano, R. (2021). Volatile organic compounds in breads prepared with different sourdoughs. Applied Sciences, 11(3), 1330.
  • De Vuyst, L., Comasio, A., & Kerrebroeck, S. V. (2023). Sourdough production: Fermentation strategies, microbial ecology, and use of non-flour ingredients. Critical Reviews in Food Science and Nutrition, 63(15), 2447-2479.
  • Del Pulgar, J. S., Roldan, M., & Ruiz-Carrascal, J. (2013). Volatile compounds profile of sous-vide cooked pork cheeks as affected by cooking conditions (vacuum packaging, temperature and time). Molecules, 18(10), 12538-12547.
  • Dhar, P., Kashyap, P., Jindal, N., & Rani, R. (2018). Role of electronic nose technology in food industry. Emerg. Sustain. Technol. Food Process, 1-2.
  • Duan, C., Liao, H., Wang, K., & Ren, Y. (2023). The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: A systematic quantitative review. Environmental Research, 216, 114386.
  • El Hadi, M. A. M., Zhang, F. J., Wu, F. F., Zhou, C. H., & Tao, J. (2013). Advances in fruit aroma volatile research. Molecules, 18(7), 8200-8229.
  • El Sohly, M. A., Radwan, M. M., Gul, W., Chandra, S., & Galal, A. (2017). Phytochemistry of Cannabis sativa L. Phytocannabinoids: unraveling the complex chemistry and pharmacology of Cannabis sativa, 1-36.
  • Ellis, A. M., & Mayhew, C. A. (2013). Proton transfer reaction mass spectrometry: principles and applications: John Wiley & Sons.
  • Fedorov, F. S., Yaqin, A., Krasnikov, D. V., Kondrashov, V. A., Ovchinnikov, G., Kostyukevich, Y., & Nasibulin, A. G. (2021). Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chemistry, 345, 128747.
  • Ferreira, M. V. S., Cappato, L. P., Silva, R., Rocha, R. S., Guimarães, J. T., Balthazar, C. F., & Cruz, A. G. (2019). Ohmic heating for processing of whey-raspberry flavored beverage. Food Chemistry, 297, 125018.
  • Francesca, N., Gaglio, R., Alfonzo, A., Corona, O., Moschetti, G., & Settanni, L. (2019). Characteristics of sourdoughs and baked pizzas as affected by starter culture inoculums. International journal of food microbiology, 293, 114-123.
  • Franková, H., Musilová, J., Árvay, J., Šnirc, M., Jančo, I., Lidiková, J., & Vollmannová, A. (2022). Changes in antioxidant properties and phenolics in sweet potatoes (Ipomoea batatas L.) due to heat treatments. Molecules, 27(6), 1884.
  • Gaglio, R., Barbera, M., Tesoriere, L., Osimani, A., Busetta, G., Matraxia, M., & Settanni, L. (2021). Sourdough “ciabatta” bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. Innovative Food Science & Emerging Technologies, 72, 102755.
  • Gancarz, M., Malaga-Toboła, U., Oniszczuk, A., Tabor, S., Oniszczuk, T., Gawrysiak-Witulska, M., & Rusinek, R. (2021). Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. Food and Bioproducts Processing, 127, 90-98.
  • Ge, S., Chen, Y., Ding, S., Zhou, H., Jiang, L., Yi, Y., Wang, R. (2020). Changes in volatile flavor compounds of peppers during hot air drying process based on headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS). Journal of the Science of Food and Agriculture, 100(7), 3087-3098.
  • Gilbert, J. R., McCaskill, D., Fishman, V. N., Brzak, K., Markham, D., Bartels, M. J., Lewer, P. (2013). Chapter 17 - Industrial Applications of High-Resolution GC/MS. In I. Ferrer & E. M. Thurman (Eds.), Comprehensive Analytical Chemistry (Vol. 61, pp. 403-429): Elsevier.
  • Hu, Y., Zhang, J., Wang, S., Liu, Y., Li, L., & Gao, M. (2022). Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. Journal of Food Science, 87(4), 1823-1836.
  • Javed, H. U., Wang, D., Andaleeb, R., Zahid, M. S., Shi, Y., Akhtar, S., & Duan, C. Q. (2021). Drying treatments change the composition of aromatic compounds from fresh to dried centennial seedless grapes. Foods, 10(3), 559.
  • Ježek, F., Kameník, J., Macharáčková, B., Bogdanovičová, K., & Bednář, J. (2020). Cooking of meat: effect on texture, cooking loss and microbiological quality–a review. Acta Veterinaria Brno, 88(4), 487-496.
  • Jin, W., Fan, X., Jiang, C., Liu, Y., Zhu, K., Miao, X., & Jiang, P. (2023). Characterization of non-volatile and volatile flavor profiles of Coregonus peled meat cooked by different methods. Food Chem X, 17, 100584.
  • Kazakos, S., Mantzourani, I., & Plessas, S. (2022). Quality characteristics of novel sourdough breads made with functional Lacticaseibacillus paracasei SP5 and prebiotic food matrices. Foods, 11(20), 3226.
  • Khatib, M., & Haick, H. (2022). Sensors for volatile organic compounds. ACS nano, 16(5), 7080-7115.
  • Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement, 124, 447-452.
  • Kuettner, E. B., Hilgenfeld, R., & Weiss, M. S. (2002). Purification, characterization, and crystallization of alliinase from garlic. Archives of Biochemistry and Biophysics, 402(2), 192-200.
  • Lee-Rangel, H. A., Mendoza-Martinez, G. D., Diaz de León-Martínez, L., Relling, A. E., Vazquez-Valladolid, A., Palacios-Martínez, M., & Roque-Jiménez, J. A. (2022). Application of an electronic nose and HS-SPME/GC-MS to determine volatile organic compounds in fresh mexican cheese. Foods, 11(13), 1887.
  • Lin, H., Chen, H., Yin, C., Zhang, Q., Li, Z., Shi, Y., & Men, H. (2022). Lightweight residual convolutional neural network for soybean classification combined with electronic nose. IEEE Sensors Journal, 22(12), 11463-11473.
  • Lin, H., Jiang, H., Adade, S. Y. S. S., Kang, W., Xue, Z., Zareef, M., & Chen, Q. (2022). Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Critical Reviews in Food Science and Nutrition, 1-23.
  • Lin, H., Jiang, H., Adade, S. Y. S. S., Kang, W., Xue, Z., Zareef, M., & Chen, Q. (2023). Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Critical Reviews in Food Science and Nutrition, 63(26), 8226-8248.
  • Liu, S., Sun, H., Ma, G., Zhang, T., Wang, L., Pei, H., & Gao, L. (2022). Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Frontiers in Nutrition, 9, 973677.
  • Majchrzak, T., Wojnowski, W., Lubinska-Szczygeł, M., Różańska, A., Namieśnik, J., & Dymerski, T. (2018). PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Analytica Chimica Acta, 1035, 1-13.
  • Makhoul, S., Romano, A., Capozzi, V., Spano, G., Aprea, E., Cappellin, L., & Biasioli, F. (2015). Volatile compound production during the bread-making process: Effect of flour, yeast and their interaction. Food and Bioprocess Technology, 8, 1925-1937.
  • Mancinelli, A. C., Silletti, E., Mattioli, S., Dal Bosco, A., Sebastiani, B., Menchetti, L., & Castellini, C. (2021). Fatty acid profile, oxidative status, and content of volatile organic compounds in raw and cooked meat of different chicken strains. Poultry Science, 100(2), 1273-1282.
  • Matindoust, S., Farzi, G., Nejad, M. B., & Shahrokhabadi, M. H. (2021). Polymer-based gas sensors to detect meat spoilage: A review. Reactive and Functional Polymers, 165, 104962.
  • Medina, S., Pereira, J. A., Silva, P., Perestrelo, R., & Câmara, J. S. (2019). Food fingerprints–A valuable tool to monitor food authenticity and safety. Food Chemistry, 278, 144-162.
  • Mellor, C., Embling, R., Neilson, L., Randall, T., Wakeham, C., Lee, M. D., & Wilkinson, L. L. (2022). Consumer knowledge and acceptance of “algae” as a protein alternative: A UK-based qualitative study. Foods, 11(12), 1703.
  • Molfetta, M., Celano, G., & Minervini, F. (2021). Functional, nutritional, and sensory quality of mixed flours-based breads as compared to durum wheat semolina-based breads. Foods, 10(7), 1613.
  • Monteiro, S. S., Almeida, R. L., Santos, N. C., Pereira, E. M., Silva, A. P., Oliveira, H. M. L., & Pasquali, M. A. D. B. (2023). New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends. Foods, 12(13), 2494.
  • Natrella, G., Gambacorta, G., & Faccia, M. (2022). Influence of the stretching temperature on the volatile compounds and odour intensity of high moisture mozzarella: A model study. International Dairy Journal, 130, 105282.
  • Ng, M. K., Moore, C. J., Adhikari, K., Andress, E. L., Henes, S. T., Lee, J. S., & Cox, G. O. (2022). Application of a sensory evaluation methodology for recipes utilized in federal nutrition education programs. Journal of Sensory Studies, 37(4), e12752.
  • Nissen, L., Bordoni, A., & Gianotti, A. (2020). Shift of volatile organic compounds (VOCs) in gluten-free hemp-enriched sourdough bread: A metabolomic approach. Nutrients, 12(4), 1050.
  • Palermo, M., Pellegrini, N., & Fogliano, V. (2014). The effect of cooking on the phytochemical content of vegetables. Journal of the Science of Food and Agriculture, 94(6), 1057-1070.
  • Perri, G., Coda, R., Rizzello, C. G., Celano, G., Ampollini, M., Gobbetti, M., & Calasso, M. (2021). Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chemistry, 355, 129638.
  • Pico, J., Khomenko, I., Capozzi, V., Navarini, L., & Biasioli, F. (2020). Real-time monitoring of volatile compounds losses in the oven during baking and toasting of gluten-free bread doughs: A PTR-MS evidence. Foods, 9(10), 1498.
  • Plessas, S., Mantzourani, I., & Bekatorou, A. (2020). Evaluation of Pediococcus pentosaceus SP2 as starter culture on sourdough bread making. Foods, 9(1), 77.
  • Ponzoni, A., Depari, A., Falasconi, M., Comini, E., Flammini, A., Marioli, D., Sberveglieri, G. (2008). Bread baking aromas detection by low-cost electronic nose. Sensors and Actuators B: Chemical, 130(1), 100-104.
  • Pozzer, A. C., Gómez, P. A., & Weiss, J. (2022). Volatile organic compounds in aquatic ecosystems–Detection, origin, significance and applications. Science of The Total Environment, 838, 156155.
  • Richter, T. M., Silcock, P., Algarra, A., Eyres, G. T., Capozzi, V., Bremer, P. J., & Biasioli, F. (2018). Evaluation of PTR-ToF-MS as a tool to track the behavior of hop-derived compounds during the fermentation of beer. Food research international, 111, 582-589.
  • Rodríguez, L. M. N., Arias, R., Soteras, T., Sancho, A., Pesquero, N., Rossetti, L., & Szerman, N. (2021). Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. LWT, 145, 111255.
  • Rondanelli, M., Perdoni, F., Infantino, V., Faliva, M. A., Peroni, G., Iannello, G., & Cocuzza, C. (2019). Volatile organic compounds as biomarkers of gastrointestinal diseases and nutritional status. Journal of Analytical Methods in Chemistry, 2019.
  • Ruisi, P., Ingraffia, R., Urso, V., Giambalvo, D., Alfonzo, A., Corona, O., & Frenda, A. S. (2021). Influence of grain quality, semolinas and baker’s yeast on bread made from old landraces and modern genotypes of Sicilian durum wheat. Food Research International, 140, 110029.
  • Saa, D. L. T., Nissen, L., & Gianotti, A. (2019). Metabolomic approach to study the impact of flour type and fermentation process on volatile profile of bakery products. Food Research International, 119, 510-516.
  • Sanmartin, C., Taglieri, I., Venturi, F., Macaluso, M., Zinnai, A., Tavarini, S., & Angelini, L. G. (2020). Flaxseed cake as a tool for the improvement of nutraceutical and sensorial features of sourdough bread. Foods, 9(2), 204.
  • Shaker, M. (2015). Comparison between traditional deep-fat frying and air-frying for production of healthy fried potato strips. International Food Research Journal, 22(4).
  • Shakoor, A., Zhang, C., Xie, J., & Yang, X. (2022). Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chemistry, 393, 133416.
  • Sireyil, G., & Alim, A. (2022). Effects of onion paste on flavor of a different kind of bread (naan) analyzed with E‐Nose and GC‐IMS. Journal of Food Processing and Preservation, 46(4), e16457.
  • Solchansanj, S., & Jayas, D. S. (2020). Drying of foodstuffs. In Handbook of industrial drying (pp. 589-625). CRC Press.
  • Song, S., Zhang, X., Hayat, K., Liu, P., Jia, C., Xia, S., Niu, Y. (2011). Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chemistry, 124(1), 203-209.
  • Soukoulis, C., Aprea, E., Biasioli, F., Cappellin, L., Schuhfried, E., Märk, T. D., & Gasperi, F. (2010). Proton transfer reaction time‐of‐flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk. Rapid Communications in Mass Spectrometry, 24(14), 2127-2134.
  • Srinivasan, A., Mayildurai, R., Maruthavanan, T., & Ramasubbu, A. (2021). GC–MS Investigation of Volatile Organic Compounds in Cosmetics Manufactured in South India.
  • Starowicz, M. (2021). Analysis of volatiles in food products. Separations, 8(9), 157.
  • Starowicz, M., & Zieliński, H. (2019). How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Reviews International, 35(8), 707-725.
  • Swain, M. R., Anandharaj, M., Ray, R. C., & Rani, R. P. (2014). Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnology research international, 2014.
  • Taglieri, I., Sanmartin, C., Venturi, F., Macaluso, M., Bianchi, A., Sgherri, C., & Zinnai, A. (2021). Bread fortified with cooked purple potato flour and citrus albedo: An evaluation of its compositional and sensorial properties. Foods, 10(5), 942.
  • Tamanna, N., & Mahmood, N. (2015). Food processing and maillard reaction products: effect on human health and nutrition. International journal of food science, 2015.
  • Truong, T. Q., Nguyen, T. T., Cho, J. Y., Park, Y. J., Choi, J. H., Koo, S. Y., & Kim, S. M. (2022). Effect of processing treatments on the phytochemical composition of asparagus (Asparagus officinalis L.) juice. LWT, 169, 113948.
  • Tumlinson, J. H. (2014). The importance of volatile organic compounds in ecosystem functioning. Journal of chemical ecology, 40, 212-213.
  • Vilar, E. G., O'Sullivan, M. G., Kerry, J. P., & Kilcawley, K. N. (2022). Volatile organic compounds in beef and pork by gas chromatography‐mass spectrometry: A review. Separation Science Plus, 5(9), 482-512.
  • Vollmer, R., Villagaray, R., Castro, M., Cárdenas, J., Pineda, S., Espirilla, J., Rennó Azevedo, V. n. C. (2022). The world’s largest potato cryobank at the International Potato Center (CIP)–Status quo, protocol improvement through large-scale experiments and long-term viability monitoring. Frontiers in Plant Science, 13, 1059817. Wachełko, O., Szpot, P., & Zawadzki, M. (2021). The application of headspace gas chromatographic method for the determination of ethyl alcohol in craft beers, wines and soft drinks. Food Chemistry, 346, 128924.
  • Wang, M., & Chen, Y. (2024). Electronic nose and its application in the food industry: a review. European Food Research and Technology, 250(1), 21-67.
  • Wang, R., Huang, F., Zhang, L., Liu, Q., Zhang, C., & Zhang, H. (2019). Changes in the texture, microstructures, colour and volatile compounds of pork meat loins during superheated steam cooking. International Journal of Food Science & Technology, 54(10), 2821-2830.
  • Wang, Y., Li, J., Wu, Y., Yang, S., Wang, D., & Liu, Q. (2021). Analysis of volatile compounds in sea bass (Lateolabrax japonicus) resulting from different slaughter methods using electronic-nose (e-nose) and Gas Chromatography-Ion Mobility Spectrometry. Molecules, 26(19), 5889.
  • Warburton, A., Silcock, P., & Eyres, G. T. (2022). Impact of sourdough culture on the volatile compounds in wholemeal sourdough bread. Food Research International, 161, 111885.
  • Wei, G., Dan, M., Zhao, G., & Wang, D. (2023). Recent advances in chromatography-mass spectrometry and electronic nose technology in food flavor analysis and detection. Food Chemistry, 405, 134814.
  • Widyastuti, Y., & Febrisiantosa, A. (2014). The role of lactic acid bacteria in milk fermentation. Food and Nutrition Sciences, 2014.
  • Wieczorek, M. N., Kowalczewski, P. Ł., Drabińska, N., Różańska, M. B., & Jeleń, H. H. (2022). Effect of cricket powder incorporation on the Profile of volatile organic compounds, free amino acids and sensory properties of gluten-free bread. Polish Journal of Food and Nutrition Sciences, 72(4), 431-442.
  • Wu, S., Peng, Y., Xi, J., Zhao, Q., Xu, D., Jin, Z., & Xu, X. (2022). Effect of sourdough fermented with corn oil and lactic acid bacteria on bread flavor. LWT, 155, 112935.
  • Xu, D., Peng, Y., Wu, F., Jin, Y., Yang, N., & Xu, X. (2022). Effect of fermented cream with partial substitution of soy protein isolate on bread quality and volatile compounds. Food Bioscience, 50, 102142.
  • Xu, L., Yu, X., Li, M., Chen, J., & Wang, X. (2017). Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. International Journal of Food Properties, 20(sup3), S2926-S2938.
  • Xu, Y., Chen, Y. P., Deng, S., Li, C., Xu, X., Zhou, G., & Liu, Y. (2020). Application of sensory evaluation, GC-ToF-MS, and E-nose to discriminate the flavor differences among five distinct parts of the Chinese blanched chicken. Food Research International, 137, 109669.
  • Yang, B., Zhang, Y., Jiang, S., Lu, J., & Lin, L. (2023). Effects of different cooking methods on the edible quality of crayfish (Procambarus clarkii) meat. Food Chemistry Advances, 2, 100168.
  • Yao, J. L., Zhang, Q. A., & Liu, M. J. (2021). Utilization of apricot kernel skins by ultrasonic treatment of the dough to produce a bread with better flavor and good shelf life. LWT, 145, 111545.
  • Yin, L., Jayan, H., Cai, J., El-Seedi, H. R., Guo, Z., & Zou, X. (2023). Spoilage Monitoring and Early Warning for Apples in Storage Using Gas Sensors and Chemometrics. Foods, 12(15), 2968.
  • Yu, Y., Wang, G., Yin, X., Ge, C., & Liao, G. (2021). Effects of different cooking methods on free fatty acid profile, water-soluble compounds and flavor compounds in Chinese Piao chicken meat. Food Research International, 149, 110696.
  • Zhang, J., Wang, T., Zhao, N., Xu, J., Qi, Y., Wei, X., & Fan, M. (2021). Performance of a novel β-glucosidase BGL0224 for aroma enhancement of Cabernet Sauvignon wines. LWT, 144, 111244.
  • Zhang, R., Chen, H., Chen, Y., Tang, C., Jiang, B., & Wang, Z. (2023). Impact of different cooking methods on the flavor and chemical profile of yellow-fleshed table-stock sweetpotatoes (Ipomoea batatas L.). Food Chem X, 17, 100542.
  • Zheng, K., Li, B., Liu, Y., Wu, D., Bai, Y., & Xiang, Q. (2023). Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. LWT, 176, 114547.
  • Zhou, H., Cui, W., Gao, Y., Li, P., Pu, X., Wang, Y., Xu, B. (2022a). Analysis of the volatile compounds in Fuliji roast chicken during processing and storage based on GC-IMS. Current Research in Food Science, 5, 1484-1493.
  • Zhou, T., Gao, H., Xing, B., Bassey, A., Yang, L., Li, C., & Li, C. (2022b). Effect of heating temperature and time on the formation of volatile organic compounds during reactions between linoleic acid and free amino acids or myofibrillar proteins. International Journal of Food Science & Technology, 57(12), 7644-7652.
  • Zhou, X., Zhou, X., Wang, C., & Zhou, H. (2022c). Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere, 137489.

Investigation of volatile organic compound (VOC) profile change in foods under different conditions

Yıl 2025, Cilt: 3 Sayı: 1, 11 - 26, 28.03.2025

Öz

Volatile organic compounds (VOCs) are widely used in numerous sectors, making the detection of VOCs an important and comprehensive topic of research. Foods naturally release VOCs that have a distinctive and unique characteristic, similar to a fingerprint. The VOC composition released by foods significantly affects both aroma and taste, hence playing a vital influence in customer preferences. Although GC-MS and PTR-MS have historically been the main methods for analyzing VOCs, other techniques such as sensors and e-noses have developed as alternate options for VOC detection in recent times. VOC sensors are being employed in intelligent packaging systems to monitor the shelf life of products and detect indicators of spoiling. From a novel perspective, the analysis of VOCs has provided insight into the cooking process, which is a crucial activity in the food industry. The cooking process is highly customizable, depending on factors such as ingredients, quantity, techniques, and parameters. The complicated composition of VOCs and the chemical processes that occur in food, particularly the Maillard reaction, have been taken into consideration. The objective of this study is to thoroughly examine the creation of VOCs during the process of cooking. The study attempts to understand the specific mechanisms that lead to the production of VOCs, taking into account aspects such as the composition of recipe, cooking methods, and process parameters. Although the outcomes have been variable, and there is a possibility that integrating VOC sensors with advanced image processing and artificial intelligence technologies might facilitate the monitoring and automated termination of the cooking process.

Destekleyen Kurum

Beko Corporate

Kaynakça

  • Aaslyng, M. D., & Meinert, L. (2017). Meat flavour in pork and beef–From animal to meal. Meat Science, 132, 112-117.
  • Aghili, N. S., Rasekh, M., Karami, H., Edriss, O., Wilson, A. D., & Ramos, J. (2023). Aromatic Fingerprints: VOC Analysis with E-Nose and GC-MS for Rapid Detection of Adulteration in Sesame Oil. Sensors, 23(14), 6294.
  • Alozie, Y. E., & Ene-Obong, H. N. (2018). Recipe standardization, nutrient composition and sensory evaluation of waterleaf (Talinum triangulare) and wild spinach (Gnetum africanum) soup “afang” commonly consumed in South-south Nigeria. Food chemistry, 238, 65-72.
  • Amaya-Farfan, J., & Rodriguez-Amaya, D. B. (2021). The Maillard reactions. In Chemical changes during processing and storage of foods (pp. 215-263). Academic Press.
  • Arora, K., Ameur, H., Polo, A., Di Cagno, R., Rizzello, C. G., & Gobbetti, M. (2021). Thirty years of knowledge on sourdough fermentation: A systematic review. Trends in Food Science & Technology, 108, 71-83.
  • Bao, G., Niu, J., Li, S., Zhang, L., & Luo, Y. (2022). Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat. Ultrasonics Sonochemistry, 82, 105864.
  • Beltrán Sanahuja, A., De Pablo Gallego, S. L., Maestre Pérez, S. E., Valdés García, A., & Prats Moya, M. S. (2019). Influence of cooking and ingredients on the antioxidant activity, phenolic content and volatile profile of different variants of the Mediterranean typical tomato Sofrito. Antioxidants, 8(11), 551.
  • Benozzi, E., Romano, A., Capozzi, V., Makhoul, S., Cappellin, L., Khomenko, I., & Biasioli, F. (2015). Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. Food Research International, 76, 682-688.
  • Bi, J., Li, Y., Yang, Z., Lin, Z., Chen, F., Liu, S., & Li, C. (2022). Effect of different cooking times on the fat flavor compounds of pork belly. Journal of Food Biochemistry, 46(8), e14184.
  • Bi, J., Lin, Z., Li, Y., Chen, F., Liu, S., & Li, C. (2021). Effects of different cooking methods on volatile flavor compounds of chicken breast. Journal of Food Biochemistry, 45(8), e13770.
  • Bi, J., Yang, Z., Li, Y., Li, B., Gao, Y., Ping, C., Li, C. (2023). Effects of different cooking methods on volatile flavor compounds in garlic. International Journal of Gastronomy and Food Science, 31, 100642.
  • Bleicher, J., Ebner, E. E., & Bak, K. H. (2022). Formation and analysis of volatile and odor compounds in meat—a review. Molecules, 27(19), 6703.
  • Boscaino, F., Cammarota, G., Ottombrino, A., Nazzaro, M., Siano, F., Volpe, M. G., & Sorrentino, A. (2017). Chemical, volatile profile and shelf life of muffin enriched with supplementation chestnut cream. Journal of Food Processing and Preservation, 41(4), e13013.
  • Bou, R., Navas, J. A., Tres, A., Codony, R., & Guardiola, F. (2012). Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers. Food Control, 27(1), 254-267.
  • Cao, Y., Wu, G., Zhang, F., Xu, L., Jin, Q., Huang, J., & Wang, X. (2020). A Comparative Study of Physicochemical and Flavor Characteristics of Chicken Nuggets during Air Frying and Deep Frying. Journal of the American Oil Chemists' Society, 97(8), 901-913.
  • Cappellin, L., Aprea, E., Granitto, P., Wehrens, R., Soukoulis, C., Viola, R., & Biasioli, F. (2012). Linking GC-MS and PTR-TOF-MS fingerprints of food samples. Chemometrics and Intelligent Laboratory Systems, 118, 301-307.
  • Casciano, F., Nissen, L., & Gianotti, A. (2021). Effect of formulations and fermentation processes on volatile organic compounds and prebiotic potential of gluten-free bread fortified by spirulina (Arthrospira platensis). Food & Function, 12(20), 10226-10238.
  • Chen, H., Li, M., Sun, J., Zhang, N., Sun, B., & Tian, H. (2018). Analysis of volatile flavor constituents of fresh garlic and fried garlic oil. Fine. Chem, 8, 1355-1362.
  • Chen, J., Tao, L., Zhang, T., Zhang, J., Wu, T., Luan, D., Zhong, J. (2021). Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS, and HS-GC-IMS. LWT, 147, 111585.
  • Cheng, Y. Q., Wang, D., Zhang, C. J., Zhu, X. C., Zhu, Z. S., Lei, Y., & Huang, M. (2022). The impact of sous vide braising on the sensory characteristics and heterocyclic amines contents of braised chicken. LWT, 172, 114176.
  • Cicolella, A. (2008). Volatile Organic Compounds (VOC): definition, classification and properties. Revue des maladies respiratoires, 25(2), 155-163.
  • Conrado, J. A. M., Sequinel, R., Dias, B. C., Silvestre, M., Batista, A. D., & Petruci, J. F. D. S. (2021). Chemical QR code: a simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chemistry, 350, 129243.
  • Da, D., Nian, Y., Shi, J., Li, Y., Zhao, D., Zhang, G., & Li, C. (2021). Characterization of specific volatile components in braised pork with different tastes by SPME‐GC/MS and electronic nose. Journal of Food Processing and Preservation, 45(5), e15492.
  • de Carvalho, N. M., Madureira, A. R., & Pintado, M. E. (2020). The potential of insects as food sources–a review. Critical reviews in food science and nutrition, 60(21), 3642-3652.
  • De Luca, L., Aiello, A., Pizzolongo, F., Blaiotta, G., Aponte, M., & Romano, R. (2021). Volatile organic compounds in breads prepared with different sourdoughs. Applied Sciences, 11(3), 1330.
  • De Vuyst, L., Comasio, A., & Kerrebroeck, S. V. (2023). Sourdough production: Fermentation strategies, microbial ecology, and use of non-flour ingredients. Critical Reviews in Food Science and Nutrition, 63(15), 2447-2479.
  • Del Pulgar, J. S., Roldan, M., & Ruiz-Carrascal, J. (2013). Volatile compounds profile of sous-vide cooked pork cheeks as affected by cooking conditions (vacuum packaging, temperature and time). Molecules, 18(10), 12538-12547.
  • Dhar, P., Kashyap, P., Jindal, N., & Rani, R. (2018). Role of electronic nose technology in food industry. Emerg. Sustain. Technol. Food Process, 1-2.
  • Duan, C., Liao, H., Wang, K., & Ren, Y. (2023). The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: A systematic quantitative review. Environmental Research, 216, 114386.
  • El Hadi, M. A. M., Zhang, F. J., Wu, F. F., Zhou, C. H., & Tao, J. (2013). Advances in fruit aroma volatile research. Molecules, 18(7), 8200-8229.
  • El Sohly, M. A., Radwan, M. M., Gul, W., Chandra, S., & Galal, A. (2017). Phytochemistry of Cannabis sativa L. Phytocannabinoids: unraveling the complex chemistry and pharmacology of Cannabis sativa, 1-36.
  • Ellis, A. M., & Mayhew, C. A. (2013). Proton transfer reaction mass spectrometry: principles and applications: John Wiley & Sons.
  • Fedorov, F. S., Yaqin, A., Krasnikov, D. V., Kondrashov, V. A., Ovchinnikov, G., Kostyukevich, Y., & Nasibulin, A. G. (2021). Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chemistry, 345, 128747.
  • Ferreira, M. V. S., Cappato, L. P., Silva, R., Rocha, R. S., Guimarães, J. T., Balthazar, C. F., & Cruz, A. G. (2019). Ohmic heating for processing of whey-raspberry flavored beverage. Food Chemistry, 297, 125018.
  • Francesca, N., Gaglio, R., Alfonzo, A., Corona, O., Moschetti, G., & Settanni, L. (2019). Characteristics of sourdoughs and baked pizzas as affected by starter culture inoculums. International journal of food microbiology, 293, 114-123.
  • Franková, H., Musilová, J., Árvay, J., Šnirc, M., Jančo, I., Lidiková, J., & Vollmannová, A. (2022). Changes in antioxidant properties and phenolics in sweet potatoes (Ipomoea batatas L.) due to heat treatments. Molecules, 27(6), 1884.
  • Gaglio, R., Barbera, M., Tesoriere, L., Osimani, A., Busetta, G., Matraxia, M., & Settanni, L. (2021). Sourdough “ciabatta” bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. Innovative Food Science & Emerging Technologies, 72, 102755.
  • Gancarz, M., Malaga-Toboła, U., Oniszczuk, A., Tabor, S., Oniszczuk, T., Gawrysiak-Witulska, M., & Rusinek, R. (2021). Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. Food and Bioproducts Processing, 127, 90-98.
  • Ge, S., Chen, Y., Ding, S., Zhou, H., Jiang, L., Yi, Y., Wang, R. (2020). Changes in volatile flavor compounds of peppers during hot air drying process based on headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS). Journal of the Science of Food and Agriculture, 100(7), 3087-3098.
  • Gilbert, J. R., McCaskill, D., Fishman, V. N., Brzak, K., Markham, D., Bartels, M. J., Lewer, P. (2013). Chapter 17 - Industrial Applications of High-Resolution GC/MS. In I. Ferrer & E. M. Thurman (Eds.), Comprehensive Analytical Chemistry (Vol. 61, pp. 403-429): Elsevier.
  • Hu, Y., Zhang, J., Wang, S., Liu, Y., Li, L., & Gao, M. (2022). Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. Journal of Food Science, 87(4), 1823-1836.
  • Javed, H. U., Wang, D., Andaleeb, R., Zahid, M. S., Shi, Y., Akhtar, S., & Duan, C. Q. (2021). Drying treatments change the composition of aromatic compounds from fresh to dried centennial seedless grapes. Foods, 10(3), 559.
  • Ježek, F., Kameník, J., Macharáčková, B., Bogdanovičová, K., & Bednář, J. (2020). Cooking of meat: effect on texture, cooking loss and microbiological quality–a review. Acta Veterinaria Brno, 88(4), 487-496.
  • Jin, W., Fan, X., Jiang, C., Liu, Y., Zhu, K., Miao, X., & Jiang, P. (2023). Characterization of non-volatile and volatile flavor profiles of Coregonus peled meat cooked by different methods. Food Chem X, 17, 100584.
  • Kazakos, S., Mantzourani, I., & Plessas, S. (2022). Quality characteristics of novel sourdough breads made with functional Lacticaseibacillus paracasei SP5 and prebiotic food matrices. Foods, 11(20), 3226.
  • Khatib, M., & Haick, H. (2022). Sensors for volatile organic compounds. ACS nano, 16(5), 7080-7115.
  • Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement, 124, 447-452.
  • Kuettner, E. B., Hilgenfeld, R., & Weiss, M. S. (2002). Purification, characterization, and crystallization of alliinase from garlic. Archives of Biochemistry and Biophysics, 402(2), 192-200.
  • Lee-Rangel, H. A., Mendoza-Martinez, G. D., Diaz de León-Martínez, L., Relling, A. E., Vazquez-Valladolid, A., Palacios-Martínez, M., & Roque-Jiménez, J. A. (2022). Application of an electronic nose and HS-SPME/GC-MS to determine volatile organic compounds in fresh mexican cheese. Foods, 11(13), 1887.
  • Lin, H., Chen, H., Yin, C., Zhang, Q., Li, Z., Shi, Y., & Men, H. (2022). Lightweight residual convolutional neural network for soybean classification combined with electronic nose. IEEE Sensors Journal, 22(12), 11463-11473.
  • Lin, H., Jiang, H., Adade, S. Y. S. S., Kang, W., Xue, Z., Zareef, M., & Chen, Q. (2022). Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Critical Reviews in Food Science and Nutrition, 1-23.
  • Lin, H., Jiang, H., Adade, S. Y. S. S., Kang, W., Xue, Z., Zareef, M., & Chen, Q. (2023). Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Critical Reviews in Food Science and Nutrition, 63(26), 8226-8248.
  • Liu, S., Sun, H., Ma, G., Zhang, T., Wang, L., Pei, H., & Gao, L. (2022). Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Frontiers in Nutrition, 9, 973677.
  • Majchrzak, T., Wojnowski, W., Lubinska-Szczygeł, M., Różańska, A., Namieśnik, J., & Dymerski, T. (2018). PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Analytica Chimica Acta, 1035, 1-13.
  • Makhoul, S., Romano, A., Capozzi, V., Spano, G., Aprea, E., Cappellin, L., & Biasioli, F. (2015). Volatile compound production during the bread-making process: Effect of flour, yeast and their interaction. Food and Bioprocess Technology, 8, 1925-1937.
  • Mancinelli, A. C., Silletti, E., Mattioli, S., Dal Bosco, A., Sebastiani, B., Menchetti, L., & Castellini, C. (2021). Fatty acid profile, oxidative status, and content of volatile organic compounds in raw and cooked meat of different chicken strains. Poultry Science, 100(2), 1273-1282.
  • Matindoust, S., Farzi, G., Nejad, M. B., & Shahrokhabadi, M. H. (2021). Polymer-based gas sensors to detect meat spoilage: A review. Reactive and Functional Polymers, 165, 104962.
  • Medina, S., Pereira, J. A., Silva, P., Perestrelo, R., & Câmara, J. S. (2019). Food fingerprints–A valuable tool to monitor food authenticity and safety. Food Chemistry, 278, 144-162.
  • Mellor, C., Embling, R., Neilson, L., Randall, T., Wakeham, C., Lee, M. D., & Wilkinson, L. L. (2022). Consumer knowledge and acceptance of “algae” as a protein alternative: A UK-based qualitative study. Foods, 11(12), 1703.
  • Molfetta, M., Celano, G., & Minervini, F. (2021). Functional, nutritional, and sensory quality of mixed flours-based breads as compared to durum wheat semolina-based breads. Foods, 10(7), 1613.
  • Monteiro, S. S., Almeida, R. L., Santos, N. C., Pereira, E. M., Silva, A. P., Oliveira, H. M. L., & Pasquali, M. A. D. B. (2023). New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends. Foods, 12(13), 2494.
  • Natrella, G., Gambacorta, G., & Faccia, M. (2022). Influence of the stretching temperature on the volatile compounds and odour intensity of high moisture mozzarella: A model study. International Dairy Journal, 130, 105282.
  • Ng, M. K., Moore, C. J., Adhikari, K., Andress, E. L., Henes, S. T., Lee, J. S., & Cox, G. O. (2022). Application of a sensory evaluation methodology for recipes utilized in federal nutrition education programs. Journal of Sensory Studies, 37(4), e12752.
  • Nissen, L., Bordoni, A., & Gianotti, A. (2020). Shift of volatile organic compounds (VOCs) in gluten-free hemp-enriched sourdough bread: A metabolomic approach. Nutrients, 12(4), 1050.
  • Palermo, M., Pellegrini, N., & Fogliano, V. (2014). The effect of cooking on the phytochemical content of vegetables. Journal of the Science of Food and Agriculture, 94(6), 1057-1070.
  • Perri, G., Coda, R., Rizzello, C. G., Celano, G., Ampollini, M., Gobbetti, M., & Calasso, M. (2021). Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chemistry, 355, 129638.
  • Pico, J., Khomenko, I., Capozzi, V., Navarini, L., & Biasioli, F. (2020). Real-time monitoring of volatile compounds losses in the oven during baking and toasting of gluten-free bread doughs: A PTR-MS evidence. Foods, 9(10), 1498.
  • Plessas, S., Mantzourani, I., & Bekatorou, A. (2020). Evaluation of Pediococcus pentosaceus SP2 as starter culture on sourdough bread making. Foods, 9(1), 77.
  • Ponzoni, A., Depari, A., Falasconi, M., Comini, E., Flammini, A., Marioli, D., Sberveglieri, G. (2008). Bread baking aromas detection by low-cost electronic nose. Sensors and Actuators B: Chemical, 130(1), 100-104.
  • Pozzer, A. C., Gómez, P. A., & Weiss, J. (2022). Volatile organic compounds in aquatic ecosystems–Detection, origin, significance and applications. Science of The Total Environment, 838, 156155.
  • Richter, T. M., Silcock, P., Algarra, A., Eyres, G. T., Capozzi, V., Bremer, P. J., & Biasioli, F. (2018). Evaluation of PTR-ToF-MS as a tool to track the behavior of hop-derived compounds during the fermentation of beer. Food research international, 111, 582-589.
  • Rodríguez, L. M. N., Arias, R., Soteras, T., Sancho, A., Pesquero, N., Rossetti, L., & Szerman, N. (2021). Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. LWT, 145, 111255.
  • Rondanelli, M., Perdoni, F., Infantino, V., Faliva, M. A., Peroni, G., Iannello, G., & Cocuzza, C. (2019). Volatile organic compounds as biomarkers of gastrointestinal diseases and nutritional status. Journal of Analytical Methods in Chemistry, 2019.
  • Ruisi, P., Ingraffia, R., Urso, V., Giambalvo, D., Alfonzo, A., Corona, O., & Frenda, A. S. (2021). Influence of grain quality, semolinas and baker’s yeast on bread made from old landraces and modern genotypes of Sicilian durum wheat. Food Research International, 140, 110029.
  • Saa, D. L. T., Nissen, L., & Gianotti, A. (2019). Metabolomic approach to study the impact of flour type and fermentation process on volatile profile of bakery products. Food Research International, 119, 510-516.
  • Sanmartin, C., Taglieri, I., Venturi, F., Macaluso, M., Zinnai, A., Tavarini, S., & Angelini, L. G. (2020). Flaxseed cake as a tool for the improvement of nutraceutical and sensorial features of sourdough bread. Foods, 9(2), 204.
  • Shaker, M. (2015). Comparison between traditional deep-fat frying and air-frying for production of healthy fried potato strips. International Food Research Journal, 22(4).
  • Shakoor, A., Zhang, C., Xie, J., & Yang, X. (2022). Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chemistry, 393, 133416.
  • Sireyil, G., & Alim, A. (2022). Effects of onion paste on flavor of a different kind of bread (naan) analyzed with E‐Nose and GC‐IMS. Journal of Food Processing and Preservation, 46(4), e16457.
  • Solchansanj, S., & Jayas, D. S. (2020). Drying of foodstuffs. In Handbook of industrial drying (pp. 589-625). CRC Press.
  • Song, S., Zhang, X., Hayat, K., Liu, P., Jia, C., Xia, S., Niu, Y. (2011). Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chemistry, 124(1), 203-209.
  • Soukoulis, C., Aprea, E., Biasioli, F., Cappellin, L., Schuhfried, E., Märk, T. D., & Gasperi, F. (2010). Proton transfer reaction time‐of‐flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk. Rapid Communications in Mass Spectrometry, 24(14), 2127-2134.
  • Srinivasan, A., Mayildurai, R., Maruthavanan, T., & Ramasubbu, A. (2021). GC–MS Investigation of Volatile Organic Compounds in Cosmetics Manufactured in South India.
  • Starowicz, M. (2021). Analysis of volatiles in food products. Separations, 8(9), 157.
  • Starowicz, M., & Zieliński, H. (2019). How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Reviews International, 35(8), 707-725.
  • Swain, M. R., Anandharaj, M., Ray, R. C., & Rani, R. P. (2014). Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnology research international, 2014.
  • Taglieri, I., Sanmartin, C., Venturi, F., Macaluso, M., Bianchi, A., Sgherri, C., & Zinnai, A. (2021). Bread fortified with cooked purple potato flour and citrus albedo: An evaluation of its compositional and sensorial properties. Foods, 10(5), 942.
  • Tamanna, N., & Mahmood, N. (2015). Food processing and maillard reaction products: effect on human health and nutrition. International journal of food science, 2015.
  • Truong, T. Q., Nguyen, T. T., Cho, J. Y., Park, Y. J., Choi, J. H., Koo, S. Y., & Kim, S. M. (2022). Effect of processing treatments on the phytochemical composition of asparagus (Asparagus officinalis L.) juice. LWT, 169, 113948.
  • Tumlinson, J. H. (2014). The importance of volatile organic compounds in ecosystem functioning. Journal of chemical ecology, 40, 212-213.
  • Vilar, E. G., O'Sullivan, M. G., Kerry, J. P., & Kilcawley, K. N. (2022). Volatile organic compounds in beef and pork by gas chromatography‐mass spectrometry: A review. Separation Science Plus, 5(9), 482-512.
  • Vollmer, R., Villagaray, R., Castro, M., Cárdenas, J., Pineda, S., Espirilla, J., Rennó Azevedo, V. n. C. (2022). The world’s largest potato cryobank at the International Potato Center (CIP)–Status quo, protocol improvement through large-scale experiments and long-term viability monitoring. Frontiers in Plant Science, 13, 1059817. Wachełko, O., Szpot, P., & Zawadzki, M. (2021). The application of headspace gas chromatographic method for the determination of ethyl alcohol in craft beers, wines and soft drinks. Food Chemistry, 346, 128924.
  • Wang, M., & Chen, Y. (2024). Electronic nose and its application in the food industry: a review. European Food Research and Technology, 250(1), 21-67.
  • Wang, R., Huang, F., Zhang, L., Liu, Q., Zhang, C., & Zhang, H. (2019). Changes in the texture, microstructures, colour and volatile compounds of pork meat loins during superheated steam cooking. International Journal of Food Science & Technology, 54(10), 2821-2830.
  • Wang, Y., Li, J., Wu, Y., Yang, S., Wang, D., & Liu, Q. (2021). Analysis of volatile compounds in sea bass (Lateolabrax japonicus) resulting from different slaughter methods using electronic-nose (e-nose) and Gas Chromatography-Ion Mobility Spectrometry. Molecules, 26(19), 5889.
  • Warburton, A., Silcock, P., & Eyres, G. T. (2022). Impact of sourdough culture on the volatile compounds in wholemeal sourdough bread. Food Research International, 161, 111885.
  • Wei, G., Dan, M., Zhao, G., & Wang, D. (2023). Recent advances in chromatography-mass spectrometry and electronic nose technology in food flavor analysis and detection. Food Chemistry, 405, 134814.
  • Widyastuti, Y., & Febrisiantosa, A. (2014). The role of lactic acid bacteria in milk fermentation. Food and Nutrition Sciences, 2014.
  • Wieczorek, M. N., Kowalczewski, P. Ł., Drabińska, N., Różańska, M. B., & Jeleń, H. H. (2022). Effect of cricket powder incorporation on the Profile of volatile organic compounds, free amino acids and sensory properties of gluten-free bread. Polish Journal of Food and Nutrition Sciences, 72(4), 431-442.
  • Wu, S., Peng, Y., Xi, J., Zhao, Q., Xu, D., Jin, Z., & Xu, X. (2022). Effect of sourdough fermented with corn oil and lactic acid bacteria on bread flavor. LWT, 155, 112935.
  • Xu, D., Peng, Y., Wu, F., Jin, Y., Yang, N., & Xu, X. (2022). Effect of fermented cream with partial substitution of soy protein isolate on bread quality and volatile compounds. Food Bioscience, 50, 102142.
  • Xu, L., Yu, X., Li, M., Chen, J., & Wang, X. (2017). Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. International Journal of Food Properties, 20(sup3), S2926-S2938.
  • Xu, Y., Chen, Y. P., Deng, S., Li, C., Xu, X., Zhou, G., & Liu, Y. (2020). Application of sensory evaluation, GC-ToF-MS, and E-nose to discriminate the flavor differences among five distinct parts of the Chinese blanched chicken. Food Research International, 137, 109669.
  • Yang, B., Zhang, Y., Jiang, S., Lu, J., & Lin, L. (2023). Effects of different cooking methods on the edible quality of crayfish (Procambarus clarkii) meat. Food Chemistry Advances, 2, 100168.
  • Yao, J. L., Zhang, Q. A., & Liu, M. J. (2021). Utilization of apricot kernel skins by ultrasonic treatment of the dough to produce a bread with better flavor and good shelf life. LWT, 145, 111545.
  • Yin, L., Jayan, H., Cai, J., El-Seedi, H. R., Guo, Z., & Zou, X. (2023). Spoilage Monitoring and Early Warning for Apples in Storage Using Gas Sensors and Chemometrics. Foods, 12(15), 2968.
  • Yu, Y., Wang, G., Yin, X., Ge, C., & Liao, G. (2021). Effects of different cooking methods on free fatty acid profile, water-soluble compounds and flavor compounds in Chinese Piao chicken meat. Food Research International, 149, 110696.
  • Zhang, J., Wang, T., Zhao, N., Xu, J., Qi, Y., Wei, X., & Fan, M. (2021). Performance of a novel β-glucosidase BGL0224 for aroma enhancement of Cabernet Sauvignon wines. LWT, 144, 111244.
  • Zhang, R., Chen, H., Chen, Y., Tang, C., Jiang, B., & Wang, Z. (2023). Impact of different cooking methods on the flavor and chemical profile of yellow-fleshed table-stock sweetpotatoes (Ipomoea batatas L.). Food Chem X, 17, 100542.
  • Zheng, K., Li, B., Liu, Y., Wu, D., Bai, Y., & Xiang, Q. (2023). Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. LWT, 176, 114547.
  • Zhou, H., Cui, W., Gao, Y., Li, P., Pu, X., Wang, Y., Xu, B. (2022a). Analysis of the volatile compounds in Fuliji roast chicken during processing and storage based on GC-IMS. Current Research in Food Science, 5, 1484-1493.
  • Zhou, T., Gao, H., Xing, B., Bassey, A., Yang, L., Li, C., & Li, C. (2022b). Effect of heating temperature and time on the formation of volatile organic compounds during reactions between linoleic acid and free amino acids or myofibrillar proteins. International Journal of Food Science & Technology, 57(12), 7644-7652.
  • Zhou, X., Zhou, X., Wang, C., & Zhou, H. (2022c). Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere, 137489.
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Gıda Kimyası ve Gıda Sensör Bilimi
Bölüm Derlemeler
Yazarlar

Muazzez Kumkapu 0000-0002-5175-7164

Ece Ercan 0009-0000-1281-7630

Deryanur Kalkavan Bu kişi benim 0000-0002-6062-3504

Gönül Çavuşoğlu Kaplan Bu kişi benim 0000-0002-9838-8271

Funda Erdem Şahnali Bu kişi benim 0000-0001-6668-8619

Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 6 Ağustos 2024
Kabul Tarihi 23 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

APA Kumkapu, M., Ercan, E., Kalkavan, D., Çavuşoğlu Kaplan, G., vd. (2025). Investigation of volatile organic compound (VOC) profile change in foods under different conditions. ITU Journal of Food Science and Technology, 3(1), 11-26.