Araştırma Makalesi
BibTex RIS Kaynak Göster

Yarı kurak bir elma bahçesinde sulama yönetimi için uydu destekli nem dinamiği değerlendirmesi

Yıl 2025, Cilt: 8 Sayı: 2, 160 - 171, 29.12.2025
https://doi.org/10.46876/ja.1700703

Öz

Yarı kurak ortamlarda bulunan meyve bahçelerinde uzun vadeli verimliliği sağlamak için sürdürülebilir su yönetimi çok önemlidir. Bu çalışma, uydu verilerinden elde edilen spektral ve termal indeksleri kullanarak ticari bir elma bahçesindeki nem değişkenliğinin altı yıllık uzaktan algılama tabanlı analizini (2020–2025) sunmaktadır. Araştırma, toprak-bitki-atmosfer etkileşimlerini değerlendirmek için birden fazla metriği entegre ederek, uzamsal ve zamansal teşhis yoluyla hidrolojik stres dönemlerinin ve iyileşme aşamalarının tespit edilmesini sağlamaktadır. Bulgular, meyve bahçesinin 2020 ve 2022 yıllarında kritik su stresi yaşadığını, çoğu tarla bölgesinde düşük gölgelik ve yüzey nemi olduğunu ve bunun atmosferik su kaybının yoğunlaşmasıyla aynı zamana denk geldiğini ortaya koymaktadır. Buna karşılık, 2025 yılı kısmi bir toparlanma yılı olarak, spektral tepkilerin iyileşmesi ve evapotranspirasyon yoğunluğunun azalmasıyla uyumlu bir tablo sergilemiştir. 2024 yılı, dikkat çekici bir anomali sergilemiştir: düşük nem göstergelerine rağmen, bitki örtüsü performansı sürdürülmüş, bu da su kullanımında yerel verimlilik veya gözlemlenemeyen yeraltı su tutma mekanizmalarına işaret etmiştir. Mekansal haritalama, yıllar boyunca tekrarlanan belirgin kuraklık bölgelerini, özellikle bahçenin kuzey ve doğu kesimlerinde tespit etmiş ve mekansal olarak uyarlanabilir sulama uygulamalarının gerekliliğini vurgulamıştır. Kombine endeks yaklaşımı, tek bir metrikle elde edilebilecek olandan daha ayrıntılı bir su dağılım modeli anlayışı sağladı. Bu bilgiler, değişken iklim koşulları altında daha duyarlı ve veriye dayalı su yönetimi stratejilerini desteklemektedir. Çalışma, hassas tarımda uzaktan algılamanın operasyonel kullanımına ilişkin artan bilgi birikimine katkıda bulunmaktadır. Çalışma, tarla düzeyinde karar vermeyi iyileştirmek, sulama verimsizliklerini azaltmak ve meyve üretim sistemlerinde iklim kaynaklı su sorunlarına karşı dayanıklılığı artırmak için spektral nem endekslerinin termal su kaybı metrikleriyle entegre edilmesinin önemini vurgulamaktadır.

Kaynakça

  • Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2007). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 95(4), 529–543.
  • Altikat, S., Gulbe, A., Kucukerdem, H. K., & Altikat, A. (2020). Applications of artificial neural networks and hybrid models for predicting CO₂ flux from soil to atmosphere. International Journal of Environmental Science and Technology, 17(10), 4719–4732. https://doi.org/10.1007/s13762-020-02799-6
  • Borgogno-Mondino, E., Farbo, A., Novello, V., & Palma, L. (2022). A fast regression-based approach to map the water status of pomegranate orchards with Sentinel-2 data. Horticulturae, 8(9), 759. https://doi.org/10.3390/horticulturae8090759
  • Campos, I., Neale, C. M. U., Calera, A., Balbontín, C., & González-Piqueras, J. (2010). Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agricultural Water Management, 98(1), 45–54.
  • Caruso, G., & Palai, G. (2023). Caruso, G. and Palai, G. (2023) 'Assessing grapevine water status using Sentinel-2 images', Italus Hortus, 30(3), pp. 70-79. doi: 10.26353/j.itahort/2023.3.7079
  • Celik, A., & Altikat, S. (2022). The effect of power harrow on the wheat residue cover and residue incorporation into the tilled soil layer. Soil & Tillage Research, 215, 105202. https://doi.org/10.1016/j.still.2021.105202
  • Crespo, N., Pádua, L., & Paredes, P. (2025). Spatial-Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula. Sensors. https://pmc.ncbi.nlm.nih.gov/articles/PMC11946650/
  • Dursun, G., Yilgan, F. & Dogan, S. Monitoring of Moisture and Temperature Regime on Agricultural Land Parcels Using Landsat-8 Remote Sensing Data in the Mardin Province, Türkiye. J Indian Soc Remote Sens 53, 1875–1890 (2025). https://doi.org/10.1007/s12524-024-02114-7
  • Farmonaut. (2025). Farmonaut Crop Health Monitoring Platform. https://www.farmonaut.com
  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
  • Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2008). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 35(6). https://doi.org/10.1029/2006GL029127
  • Ippolito, M. (2023). Assessing crop water requirements and irrigation scheduling at different spatial scales in Mediterranean orchards using models, proximal and remotely sensed data [PhD dissertation]. https://tesidottorato.depositolegale.it/handle/20.500.14242/172965
  • Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., ... & Doriaswamy, P. (2004). Vegetation water content mapping using Landsat data-derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), 475–482. https://doi.org/10.1016/j.rse.2003.10.021
  • Jopia, A., Zambrano, F., & Pérez-Martínez, W. (2020). Time series of vegetation indices (VNIR/SWIR) derived from Sentinel-2 (A/B) to assess turgor pressure in kiwifruit. ISPRS International Journal of Geo-Information, 9(11), 641. https://doi.org/10.3390/ijgi9110641
  • Li, X., Liu, Y., Wang, D., & Zhang, F. (2023). Integrating multi-source remote sensing data for real-time irrigation management in orchards. Remote Sensing Applications: Society and Environment, 30, 100995. https://doi.org/10.1016/j.rsase.2023.100995
  • Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., & Gascon, F. (2016). Sentinel-2 Level-2A atmospheric correction using Sen2Cor. Proceedings of SPIE, 10005. https://doi.org/10.1117/12.2232262
  • Malaslı, M. Z., Altıkat, S., & Çelik, A. (2012). Iğdır ili kayısı tarımının mekanizasyon sorunları ve çözüm önerileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(3), 47–54.
  • Matarrese, R., Portoghese, I., & Mirra, L. (2023). Mapping irrigated crops through Sentinel-2 satellite images: evidence from Southern Italy. IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10424152/
  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEBop model. Journal of the American Water Resources Association 49:3 577-591.
  • Thenkabail, P. S., Schull, M., & Turral, H. (2005). Ganges and Indus River Basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3), 317–341.
  • Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385–396. https://doi.org/10.1016/S0034-4257(01)00318-2

Satellite-Driven Evaluation of Moisture Dynamics for Irrigation Management in a Semi-Arid Apple Orchard

Yıl 2025, Cilt: 8 Sayı: 2, 160 - 171, 29.12.2025
https://doi.org/10.46876/ja.1700703

Öz

Sustainable water management is crucial for maintaining long-term productivity in orchard systems situated in semi-arid environments. This study uses satellite-derived spectral and thermal indices to present a six-year remote sensing-based analysis (2020–2025) of moisture variability in a commercial apple orchard. The research integrates multiple metrics to evaluate soil-plant-atmosphere interactions, enabling the detection of hydrological stress periods and recovery phases through spatial and temporal diagnostics. The findings reveal that the orchard experienced critical water stress in 2020 and 2022, characterized by low canopy and surface moisture across most field zones, which coincided with intensified atmospheric water loss. In contrast, 2025 represented a year of partial recovery, where improved spectral responses aligned with lower evapotranspiration intensity. The year 2024 exhibited a notable anomaly: despite low moisture indicators, vegetation performance was sustained, pointing to localized efficiency in water use or unobserved subsurface retention mechanisms. Spatial mapping revealed distinct dry zones recurring across years, primarily in the northern and eastern sectors of the orchard, underscoring the need for spatially adaptive irrigation practices. The combined index approach offered a more nuanced understanding of water distribution patterns than any single metric could achieve alone. These insights support more responsive and data-driven water management strategies under variable climatic conditions. The study contributes to the growing knowledge on the operational use of remote sensing in precision agriculture. It highlights the integration of spectral moisture indices with thermal water loss metrics to improve field-level decision-making, reduce irrigation inefficiencies, and enhance resilience to climate-induced water challenges in fruit production systems.

Kaynakça

  • Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2007). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 95(4), 529–543.
  • Altikat, S., Gulbe, A., Kucukerdem, H. K., & Altikat, A. (2020). Applications of artificial neural networks and hybrid models for predicting CO₂ flux from soil to atmosphere. International Journal of Environmental Science and Technology, 17(10), 4719–4732. https://doi.org/10.1007/s13762-020-02799-6
  • Borgogno-Mondino, E., Farbo, A., Novello, V., & Palma, L. (2022). A fast regression-based approach to map the water status of pomegranate orchards with Sentinel-2 data. Horticulturae, 8(9), 759. https://doi.org/10.3390/horticulturae8090759
  • Campos, I., Neale, C. M. U., Calera, A., Balbontín, C., & González-Piqueras, J. (2010). Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agricultural Water Management, 98(1), 45–54.
  • Caruso, G., & Palai, G. (2023). Caruso, G. and Palai, G. (2023) 'Assessing grapevine water status using Sentinel-2 images', Italus Hortus, 30(3), pp. 70-79. doi: 10.26353/j.itahort/2023.3.7079
  • Celik, A., & Altikat, S. (2022). The effect of power harrow on the wheat residue cover and residue incorporation into the tilled soil layer. Soil & Tillage Research, 215, 105202. https://doi.org/10.1016/j.still.2021.105202
  • Crespo, N., Pádua, L., & Paredes, P. (2025). Spatial-Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula. Sensors. https://pmc.ncbi.nlm.nih.gov/articles/PMC11946650/
  • Dursun, G., Yilgan, F. & Dogan, S. Monitoring of Moisture and Temperature Regime on Agricultural Land Parcels Using Landsat-8 Remote Sensing Data in the Mardin Province, Türkiye. J Indian Soc Remote Sens 53, 1875–1890 (2025). https://doi.org/10.1007/s12524-024-02114-7
  • Farmonaut. (2025). Farmonaut Crop Health Monitoring Platform. https://www.farmonaut.com
  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
  • Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2008). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 35(6). https://doi.org/10.1029/2006GL029127
  • Ippolito, M. (2023). Assessing crop water requirements and irrigation scheduling at different spatial scales in Mediterranean orchards using models, proximal and remotely sensed data [PhD dissertation]. https://tesidottorato.depositolegale.it/handle/20.500.14242/172965
  • Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., ... & Doriaswamy, P. (2004). Vegetation water content mapping using Landsat data-derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), 475–482. https://doi.org/10.1016/j.rse.2003.10.021
  • Jopia, A., Zambrano, F., & Pérez-Martínez, W. (2020). Time series of vegetation indices (VNIR/SWIR) derived from Sentinel-2 (A/B) to assess turgor pressure in kiwifruit. ISPRS International Journal of Geo-Information, 9(11), 641. https://doi.org/10.3390/ijgi9110641
  • Li, X., Liu, Y., Wang, D., & Zhang, F. (2023). Integrating multi-source remote sensing data for real-time irrigation management in orchards. Remote Sensing Applications: Society and Environment, 30, 100995. https://doi.org/10.1016/j.rsase.2023.100995
  • Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., & Gascon, F. (2016). Sentinel-2 Level-2A atmospheric correction using Sen2Cor. Proceedings of SPIE, 10005. https://doi.org/10.1117/12.2232262
  • Malaslı, M. Z., Altıkat, S., & Çelik, A. (2012). Iğdır ili kayısı tarımının mekanizasyon sorunları ve çözüm önerileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(3), 47–54.
  • Matarrese, R., Portoghese, I., & Mirra, L. (2023). Mapping irrigated crops through Sentinel-2 satellite images: evidence from Southern Italy. IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10424152/
  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEBop model. Journal of the American Water Resources Association 49:3 577-591.
  • Thenkabail, P. S., Schull, M., & Turral, H. (2005). Ganges and Indus River Basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3), 317–341.
  • Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385–396. https://doi.org/10.1016/S0034-4257(01)00318-2
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyosistem
Bölüm Araştırma Makalesi
Yazarlar

Alperay Altıkat 0000-0002-0087-5814

Gönderilme Tarihi 20 Mayıs 2025
Kabul Tarihi 28 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Altıkat, A. (2025). Satellite-Driven Evaluation of Moisture Dynamics for Irrigation Management in a Semi-Arid Apple Orchard. Journal of Agriculture, 8(2), 160-171. https://doi.org/10.46876/ja.1700703

İletişim; 
 Tel : 0531 245 65 86