Yıl 2020, Cilt 3 , Sayı 2, Sayfalar 1 - 9 2020-11-18

Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji
Plant and Animal Biotechnology; Cellular Agriculture and Nano-Biotechnology

Fatih DEMİREL [1]

Tarımsal biyoteknoloji araştırmacılara, tarımı ve yetiştiriciliği yapılan bütün organizlamarın genetiğini anlama ve manipüle etme imkanı sağlayan bir alandır. Tarımsal biyoteknolojinin başlangıcında fermantasyon gibi yöntemler sık kullanılırken, bugün modern tarımsal biyoteknoloji besinlerin kalitesini, miktarını, içeriğini arttırmaya ve tat gibi farklı özellikleri değiştirmeye imkan sağlamaktadır. Bitki biyoteknolojisi alanındaki çalışmalar çoğunlukla bitkilerde verim ve kaliteyi arttırmanın yanında biyotik ve abiyotik stres faktörlerine karşı dayanıklı bitkiler geliştirmeye odaklanırken, hayvan biyoteknolojisi ise hayvansal ürünlerin kalitesini arttırma, suni dölleme, embriyo transferi, hayvan hastalıklarının daha ucuz ve kolay bir şekilde teşhis ve tedavi yöntemlerinin geliştirilmesi konularını ele almaktadır. Bu çalışmada bitkisel ve hayvansal üretim alanında yeni uygulama alanı bulan hücresel üretim ve nano-biyoteknoloji uygulamaları irdelenmiştir.
Agricultural biotechnology is a field, which is provides the opportunity to understand and manipulate the genetics of all cultivated organisms. While methods such as fermentation and brewing were frequently used in the beginning of agricultural biotechnology, now modern agricultural biotechnology is used methods allowing to increase the quality, quantity and content of foods and to change different characteristics such as taste. Studies in plant biotechnology mostly focused on increasing the yield and quality of plants, as well as developing plants resistant to biotic and abiotic stress factors. However, animal biotechnology deals with the improvement of the quality of animal products, artificial insemination, embryo transfer, cheaper and easier diagnosis and treatment of animal diseases. In this study, we focused on cellular agriculture and Nano-biotechnology applications that have found new application areas in the field of plant and animal production.
  • Alharby, H. F., Metwali, E. M., Fuller, M. P., & Aldhebiani, A. Y. (2016). The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi journal of biological sciences, 23(6), 773-781.
  • Ali, M., Kim, B., Belfield, K. D., Norman, D., Brennan, M., & Ali, G. S. (2015). Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 105(9), 1183-1190.
  • Andersen, H. J. (2007). The issue ‘Raw milk quality’from the point of view of a major dairy industry. Journal of Animal and Feed Sciences, 16(1), 240-254.
  • Awais, M., Pervez, A., Yaqub, A., Sarwar, R., Alam, F., & Siraj, S. (2010). Current status of biotechnology in health. American Eurasian J. Agric. & Environ. Sci, 7(2), 210-220.
  • Ayoub, H. A., Khairy, M., Elsaid, S., Rashwan, F. A., & Abdel-Hafez, H. F. (2018). Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations. Journal of agricultural and food chemistry, 66(22), 5491-5498.
  • Ban, C., Park, S. J., Lim, S., Choi, S. J., & Choi, Y. J. (2015). Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. Journal of agricultural and food chemistry, 63(21), 5266-5272.
  • Bansal, S., Sharma, A. K., & Bhatnagar, S. K. (2012). Landmarks of Biotechnology in Agriculture: An over-view. Vegetos, 25(1), 83-88.
  • Ben-Arye, T., & Levenberg, S. (2019). Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems, 3, 46.
  • Boghossian, A. A., Sen, F., Gibbons, B. M., Sen, S., Faltermeier, S. M., Giraldo, J. P., ... & Strano, M. S. (2013). Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Advanced Energy Materials, 3(7), 881-893.
  • Borgatta, J., Ma, C., Hudson-Smith, N., Elmer, W., Plaza Pérez, C. D., De La Torre-Roche, R., ... & Hamers, R. J. (2018). Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6(11), 14847-14856.
  • Burrows, M. T. (1910). The cultivation of tissues of the chick-embryo outside the body. Journal of the American Medical Association, 55(24), 2057-2058.
  • Coghlan, A., 2003. Protato to feed india's poor. New Scientist, 177(7).
  • Cordell, D., J.-O. Drangert and S. White, 2009. The story of phosphorus: Global food security and food for thought. Global environmental change, 19(2): 292-305.
  • D’Amelia, V., Ruggiero, A., Tranchida-Lombardo, V., Leone, A., Tucci, M., & Docimo, T. (2017). Biosynthesis of salvia specialized metabolites and biotechnological approaches to increase their production. In Salvia Biotechnology (pp. 241-270). Springer, Cham.
  • Davies, K. M., & Deroles, S. C. (2014). Prospects for the use of plant cell cultures in food biotechnology. Current Opinion in Biotechnology, 26, 133-140.
  • Day, L., Williams, R. P. W., Otter, D., & Augustin, M. A. (2015). Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows. Journal of dairy science, 98(6), 3633-3644.
  • Delaney, B. (2015). Safety assessment of foods from genetically modified crops in countries with developing economies. Food and Chemical Toxicology, 86, 132-143.
  • Djanaguiraman, M., Nair, R., Giraldo, J. P., & Prasad, P. V. V. (2018). Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS omega, 3(10), 14406-14416.
  • Earle, W. R., ING, T. H. S., Straus, N. P., BRowN, M. F., & SHELToN, E. M. M. A. (1943). Changes Seen in the Living Cells. Journal, 4, 165.
  • Federico, Giovanni. 2005. Feeding the World: An Economic History of Agriculture, 1800–2000. Princeton, NJ: Princeton University Press.
  • Fu, C., W. Hu, Y. Wang and Z. Zhu, 2005. Developments in transgenic fish in the people's republic of china. Revue Scientifique et Technique-Office International des Epizooties, 24(1): 299.
  • Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., ... & Yan, X. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology, 2(9), 577-583.
  • Georgiev, V., Slavov, A., Vasileva, I., & Pavlov, A. (2018). Plant cell culture as emerging technology for production of active cosmetic ingredients. Engineering in Life Sciences, 18(11), 779-798.
  • Giraldo, J. P., Wu, H., Newkirk, G. M., & Kruss, S. (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nature nanotechnology, 14(6), 541-553.
  • Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of agricultural and food chemistry, 60(39), 9781-9792.
  • Haberlandt, G. (2003). Culturversuche mit isolierten Pflanzenzellen. In Plant tissue culture (pp. 1-24). Springer, Vienna.
  • Hirsch L. R. S., & Bankson, J. A. (2003). Sershen SR Rivera B, Price RE, Hazle JD, Halas NJ, West JL. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA, 100, 13549-54.
  • Imseng, N., Schillberg, S., Schürch, C., Schmid, D., Schütte, K., Gorr, G., ... & Eibl, R. (2014). Suspension culture of plant cells under heterotrophic conditions. Industrial scale suspension culture of living cells, 224-258.
  • James, C., (2002). Global review of commercialized transgenic crops: 2001 feature: Bt cotton. ISAAA Ithaca, NY.
  • Jeandet, P., Clément, C., & Courot, E. (2014). Resveratrol production at large scale using plant cell suspensions. Engineering in Life Sciences, 14(6), 622-632.
  • Joanitti, G., & P Silva, L. (2014). The emerging potential of by-products as platforms for drug delivery systems. Current drug targets, 15(5), 478-485.
  • Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature nanotechnology, 13(8), 677-684.
  • Kah, M., Tufenkji, N., & White, J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature nanotechnology, 14(6), 532-540.
  • Kim, J. H., Oh, Y., Yoon, H., Hwang, I., & Chang, Y. S. (2015). Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environmental science & technology, 49(2), 1113-1119.
  • Khan, S. and J. Khan, 2010. Drought tolerant wheat cultivar (raj) for rainfed areas of kpk, pakistan. Pak. J. Agri. Sci, 47(4): 355-359.
  • Kole, C., 2011. Wild crop relatives: Genomic and breeding resources: Cereals. Springer Science & Business Media. Krueger, K., Rubio, N., Datar, I., & Stachura, D. (2019). Cell-based fish: a novel approach to seafood production and an opportunity for cellular agriculture. Frontiers in Sustainable Food Systems, 3, 43.
  • Le Van, N., Ma, C., Shang, J., Rui, Y., Liu, S., & Xing, B. (2016). Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere, 144, 661-670.
  • Mattick, C. S. (2018). Cellular agriculture: The coming revolution in food production. Bulletin of the Atomic Scientists, 74(1), 32-35.
  • Merten, O. W. (2006). Introduction to animal cell culture technology—past, present and future. Cytotechnology, 50(1-3), 1.
  • Mountford, P. G. (2010). The taxol® story–development of a green synthesis via plant cell fermentation. Green chemistry in the pharmaceutical industry, 145-160.
  • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254-257.
  • Nuruzzaman, M. D., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of agricultural and food chemistry, 64(7), 1447-1483.
  • Ocsoy, I., Paret, M. L., Ocsoy, M. A., Kunwar, S., Chen, T., You, M., & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. Acs Nano, 7(10), 8972-8980.
  • Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1(3), 193-212.
  • Oyeleye, O. O., Ola, S. I., & Omitogun, O. G. (2016). Basics of animal cell culture: Foundation for modern science. Biotechnology and Molecular Biology Reviews, 11(2), 6-16.
  • Paek, K. Y., Murthy, H. N., Hahn, E. J., & Zhong, J. J. (2009). Large scale culture of ginseng adventitious roots for production of ginsenosides. In Biotechnology in China I (pp. 151-176). Springer, Berlin, Heidelberg.
  • Palmqvist, N. M., Seisenbaeva, G. A., Svedlindh, P., & Kessler, V. G. (2017). Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale research letters, 12(1), 1-9.
  • Patil, S. S., Kore, K. B., & Kumar, P. (2009). Nanotechnology and its applications in veterinary and animal science. Vet World, 2, 475-477.
  • Rahpeyma, S. A., Moieni, A., & Jalali Javaran, M. (2015). Paclitaxel production is enhanced in suspension‐cultured hazel (Corylus avellana L.) cells by using a combination of sugar, precursor, and elicitor. Engineering in Life Sciences, 15(2), 234-242.
  • Rao. G. & Ravishankar. A.(2002). Plant cell cultures: chemical factories of secondary metabolites.-Biotechnol. Adv, 20, 101-153.
  • Ringer, S. (1882). Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. The Journal of physiology, 3(5-6), 380.
  • Ringer, S. (1883). A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. The Journal of physiology, 4(1), 29.
  • Rischer, H., Szilvay, G. R., & Oksman-Caldentey, K. M. (2020). Cellular agriculture—industrial biotechnology for food and materials. Current Opinion in Biotechnology, 61, 128-134.
  • Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., ... & Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269-277.
  • Rodrigues, S. M., Demokritou, P., Dokoozlian, N., Hendren, C. O., Karn, B., Mauter, M. S., ... & Welle, P. (2017). Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 4(4), 767-781.
  • Ross, S. A., Srinivas, P. R., Clifford, A. J., Lee, S. C., Philbert, M. A., & Hettich, R. L. (2004). New technologies for nutrition research. The Journal of nutrition, 134(3), 681-685.
  • Rossi, L., Zhang, W., & Ma, X. (2017). Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 229, 132-138.
  • Rossi, L., Zhang, W., Lombardini, L., & Ma, X. (2016). The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution, 219, 28-36.
  • Sanford, K. K., Earle, W. R., & Likely, G. D. (1948). The growth in vitro of single isolated tissue cells. J natl cancer inst, 9(3), 229-246.
  • Savona, M., Barberini, S., Bassolino, L., Mozzanini, E., Pistelli, L., Pistelli, L., & Ruffoni, B. (2017). Strategies for optimization of the production of rosmarinic acid in Salvia officinalis L. and Salvia dolomitica Codd biomass with several biotechnological approaches. In Salvia Biotechnology (pp. 209-239). Springer, Cham.
  • Scott, N. R. (2005). Nanotechnology and animal health. Revue Scientifique Et Technique-Office International Des Epizooties, 24(1), 425.
  • Scott, N., & Chen, H. (2013). Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology, 9(1), 17-18.
  • Semo, E., Kesselman, E., Danino, D., & Livney, Y. D. (2007). Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food hydrocolloids, 21(5-6), 936-942.
  • Shallan, M. A., Hassan, H. M., Namich, A. A., & Ibrahim, A. A. (2016). Biochemical and physiological effects of TiO2 and SiO2 nanoparticles on cotton plant under drought stress. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 7(4), 1540-1551.
  • Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, 78, 155-166.
  • Tanaka, Y., Y. Katsumoto, F. Brugliera and J. Mason, 2005. Genetic engineering in floriculture. Plant Cell, Tissue and Organ Culture, 80(1): 1-24.
  • Thulasi, A., Rajendran, D., Jash, S., Selvaraju, S., Jose, V.L., Velusamy, S., Mathivanan, S., Nanobiotechnology in animal nutrition. Satish Serial Publishing House, New Delhi, 2013.
  • Troncarelli, M.Z.; Brandão, H.M.; Gern, J.C.; Guimarães, A.S.; Langoni, H.; Nanotechnology and antimicrobials in veterinary medicine. Badajoz, Spain, FORMATEX, 2013.
  • Wang, M. Q., & Xu, Z. R. (2004). Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian-Australasian Journal of Animal Sciences, 17(8), 1118-1122.
  • Wen, H. W., DeCory, T. R., Borejsza-Wysocki, W., & Durst, R. A. (2006). Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays. Talanta, 68(4), 1264-1272.
  • White, J. C., & Gardea-Torresdey, J. (2018). Achieving food security through the very small. Nature nanotechnology, 13(8), 627-629.
  • Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., ... & Jonell, M. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447-492.
  • Wilson, S. A., & Roberts, S. C. (2012). Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant biotechnology journal, 10(3), 249-268.
  • Wu, H., Shabala, L., Shabala, S., & Giraldo, J. P. (2018). Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano, 5(7), 1567-1583.
  • Wu, H., Tito, N., & Giraldo, J. P. (2017). Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS nano, 11(11), 11283-11297.
  • Yao, J., Cheng, Y., Zhou, M., Zhao, S., Lin, S., Wang, X., ... & Wei, H. (2018). ROS scavenging Mn 3 O 4 nanozymes for in vivo anti-inflammation. Chemical science, 9(11), 2927-2933.
  • Yao, T., & Asayama, Y. (2017). Animal‐cell culture media: History, characteristics, and current issues. Reproductive medicine and biology, 16(2), 99-117.
  • Yue, W., Ming, Q. L., Lin, B., Rahman, K., Zheng, C. J., Han, T., & Qin, L. P. (2016). Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical reviews in biotechnology, 36(2), 215-232.
  • Zadeh, J.B. & Moradi Kor, N., (2013). Nanotechnology applications in Veterinary Science, Onl J Vet Res., 17(8):419-425.
Birincil Dil tr
Konular Mühendislik, Ziraat
Bölüm Derleme Makaleleri

Orcid: 0000-0002-6846-8422
Yazar: Fatih DEMİREL (Sorumlu Yazar)
Ülke: Turkey


Başvuru Tarihi : 6 Kasım 2020
Kabul Tarihi : 12 Kasım 2020
Yayımlanma Tarihi : 18 Kasım 2020

Bibtex @derleme { ja822503, journal = {Journal of Agriculture}, issn = {2636-8757}, address = {agrijournal@hotmail.com}, publisher = {Barış EREN}, year = {2020}, volume = {3}, pages = {1 - 9}, doi = {10.46876/ja.822503}, title = {Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji}, key = {cite}, author = {Demi̇rel, Fatih} }
APA Demi̇rel, F . (2020). Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji . Journal of Agriculture , 3 (2) , 1-9 . DOI: 10.46876/ja.822503
MLA Demi̇rel, F . "Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji" . Journal of Agriculture 3 (2020 ): 1-9 <https://dergipark.org.tr/tr/pub/ja/issue/57812/822503>
Chicago Demi̇rel, F . "Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji". Journal of Agriculture 3 (2020 ): 1-9
RIS TY - JOUR T1 - Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji AU - Fatih Demi̇rel Y1 - 2020 PY - 2020 N1 - doi: 10.46876/ja.822503 DO - 10.46876/ja.822503 T2 - Journal of Agriculture JF - Journal JO - JOR SP - 1 EP - 9 VL - 3 IS - 2 SN - 2636-8757- M3 - doi: 10.46876/ja.822503 UR - https://doi.org/10.46876/ja.822503 Y2 - 2020 ER -
EndNote %0 Journal of Agriculture Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji %A Fatih Demi̇rel %T Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji %D 2020 %J Journal of Agriculture %P 2636-8757- %V 3 %N 2 %R doi: 10.46876/ja.822503 %U 10.46876/ja.822503
ISNAD Demi̇rel, Fatih . "Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji". Journal of Agriculture 3 / 2 (Kasım 2020): 1-9 . https://doi.org/10.46876/ja.822503
AMA Demi̇rel F . Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji. Journal of Agriculture. 2020; 3(2): 1-9.
Vancouver Demi̇rel F . Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji. Journal of Agriculture. 2020; 3(2): 1-9.
IEEE F. Demi̇rel , "Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji", Journal of Agriculture, c. 3, sayı. 2, ss. 1-9, Kas. 2020, doi:10.46876/ja.822503