Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 137 - 142, 08.10.2018
https://doi.org/10.13069/jacodesmath.451218

Öz

Kaynakça

  • [1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison–Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976.
  • [2] G. E. Andrews, A. Knopfmacher, P. Paule, H. Prodinger, q–Engel series expansions and Slater’s identities, Quaest. Math. 24(3) (2001) 403–416.
  • [3] G. E. Andrews, A. Knopfmacher, P. Paule, An infinite family of Engel expansions of Rogers– Ramanujan type, Adv. Appl. Math. 25(1) (2000) 2–11.
  • [4] G. E. Andrews, J. P. O. Santos, Rogers–Ramanujan type identities for partitions with attached odd parts, Ramanujan J. 1(1) (1997) 91–99.
  • [5] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer–Verlag, New York, 1991.
  • [6] B. C. Berndt, S. S. Huang, J. Sohn, S. H. Son, Some theorems on the Rogers–Ramanujan continued fraction in Ramanujan’s lost notebook, Trans. Amer. Math. Soc. 352 (2000) 2157–2177.
  • [7] D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc. 89(2) (1981) 211–223.
  • [8] R. Chapman, A new proof of some identities of Bressoud, Int. J. Math. Math. Sci. 32(10) (2002) 627–633.
  • [9] N. S. S. Gu, H. Prodinger, On some continued fraction expansions of the Rogers–Ramanujan type, Ramanujan J. 26(3) (2011) 323–367.
  • [10] A. V. Sills, Finite Rogers–Ramanujan type identities, Electron. J. Combin. 10 (2003) Research Paper 13, 122 pp.
  • [11] L. J. Slater, Further identities of the Rogers–Ramanujan type, Proc. London Math. Soc. s2–54(1) (1952) 147–167.

Finite Rogers-Ramanujan type continued fractions

Yıl 2018, , 137 - 142, 08.10.2018
https://doi.org/10.13069/jacodesmath.451218

Öz

New finite continued fractions related to Bressoud and Santos polynomials
are established.

Kaynakça

  • [1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison–Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976.
  • [2] G. E. Andrews, A. Knopfmacher, P. Paule, H. Prodinger, q–Engel series expansions and Slater’s identities, Quaest. Math. 24(3) (2001) 403–416.
  • [3] G. E. Andrews, A. Knopfmacher, P. Paule, An infinite family of Engel expansions of Rogers– Ramanujan type, Adv. Appl. Math. 25(1) (2000) 2–11.
  • [4] G. E. Andrews, J. P. O. Santos, Rogers–Ramanujan type identities for partitions with attached odd parts, Ramanujan J. 1(1) (1997) 91–99.
  • [5] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer–Verlag, New York, 1991.
  • [6] B. C. Berndt, S. S. Huang, J. Sohn, S. H. Son, Some theorems on the Rogers–Ramanujan continued fraction in Ramanujan’s lost notebook, Trans. Amer. Math. Soc. 352 (2000) 2157–2177.
  • [7] D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc. 89(2) (1981) 211–223.
  • [8] R. Chapman, A new proof of some identities of Bressoud, Int. J. Math. Math. Sci. 32(10) (2002) 627–633.
  • [9] N. S. S. Gu, H. Prodinger, On some continued fraction expansions of the Rogers–Ramanujan type, Ramanujan J. 26(3) (2011) 323–367.
  • [10] A. V. Sills, Finite Rogers–Ramanujan type identities, Electron. J. Combin. 10 (2003) Research Paper 13, 122 pp.
  • [11] L. J. Slater, Further identities of the Rogers–Ramanujan type, Proc. London Math. Soc. s2–54(1) (1952) 147–167.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Helmut Prodinger 0000-0002-0009-8015

Yayımlanma Tarihi 8 Ekim 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Prodinger, H. (2018). Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(3), 137-142. https://doi.org/10.13069/jacodesmath.451218
AMA Prodinger H. Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications. Ekim 2018;5(3):137-142. doi:10.13069/jacodesmath.451218
Chicago Prodinger, Helmut. “Finite Rogers-Ramanujan Type Continued Fractions”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, sy. 3 (Ekim 2018): 137-42. https://doi.org/10.13069/jacodesmath.451218.
EndNote Prodinger H (01 Ekim 2018) Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications 5 3 137–142.
IEEE H. Prodinger, “Finite Rogers-Ramanujan type continued fractions”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 3, ss. 137–142, 2018, doi: 10.13069/jacodesmath.451218.
ISNAD Prodinger, Helmut. “Finite Rogers-Ramanujan Type Continued Fractions”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/3 (Ekim 2018), 137-142. https://doi.org/10.13069/jacodesmath.451218.
JAMA Prodinger H. Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:137–142.
MLA Prodinger, Helmut. “Finite Rogers-Ramanujan Type Continued Fractions”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 3, 2018, ss. 137-42, doi:10.13069/jacodesmath.451218.
Vancouver Prodinger H. Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(3):137-42.