Research Article
BibTex RIS Cite

Morpho-physiological and water use performance of soybean cultivars under drought stress at early growth stages

Year 2025, Volume: 9 Issue: 1, 13 - 21
https://doi.org/10.31015/2025.1.2

Abstract

Drought is an important environmental stress for soybean (Glycine max (L) Merr.), which frequently occurs under second-crop conditions in the Mediterranean region of Türkiye and negatively affects early plant growth. In this study, we investigated the effects of drought stress (soil water content maintained at a constant 50% field capacity) on the early growth stage (V3 stage) of different soybean cultivars (Ataem-7, BATEM Erensoy, Göksoy, and Lider). Twenty-seven-day-old soybean plants were exposed to drought stress for 20 days. Morphological (plant height, root length, seedling fresh and dry weight, root fresh and dry weight, and leaf area), physiological (leaf temperature, chlorophyll rate (CR), leaf relative water content (RWC), and electrolyte leakage (EL)), and water use (total water consumption (TWC), and water use efficiency (WUE)) traits were assessed. The results revealed a significant decrease in plant height, root length, leaf area, root and shoot fresh and dry weights, and RWC, and an increase in CR under drought stress. Although Lider and BATEM Erensoy exhibited better growth than the other cultivars under control conditions, their root and shoot growth decreased significantly under water stress. Notably, Ataem-7 presented a lower TWC and WUE difference between the drought treatment and the control, and this cultivar efficiently used water for dry matter production in the shoot and root parts. As a result, there were significant genotypic differences in drought susceptibility among the soybean cultivars, and Ataem-7 showed greater tolerance to drought than the other soybean cultivars did during the early growth stage.

References

  • Ahmadizadeh, M., Valizadeh, M., Zaefizadeh, M., Shahbazi, H. (2011). Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. Journal of Applied Sciences Research, 7(3), 236-246.
  • Aziez, A. F. (2023). Growth response of soybean (Glycine max L.) under drought stress condition. Research on Crops, 24(1), 73-81.
  • Basal, O., Szabó, A., Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22, 100135.
  • Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizman, M., Shadid, M.R., Alotaibi, M., Al-Ashkar, İ., Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 2020(10), 16975. https://doi.org/10.1038/s41598-020-73489-z.
  • Cosmulescu, S., Scrieciu, F., Manda, M. (2020). Determination of leaf characteristics in different medlar genotypes using the ImageJ program. Horticultural Science, 47(2), 117-21. https://doi.org/10.17221/97/2019-HORTSCI
  • Delavar, E. G., Faramarzi, A., Ajalli, J., Nazari, N., Abdi, M. (2023). Piriformospora indica symbiosis and iron oxide nanoparticles alleviates drought stress in soybean plants through improved on photosynthetic gas exchange and sucrose phosphate synthase and acid phosphatase. Romanian Agricultural Research, 40, 1-14.
  • Desclaux, D., Huynh, T. T., Roumet, P. (2000). Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Science, 40(3), 716-722.
  • Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C., Liu, L. (2019). A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26, 2006-2017.
  • Ergin, N., Uzun, O., Kaya, M. D. (2023). Changes in plant growth and mineral concentrations of soybean cultivars under waterlogging stress. Journal of Elementology, 28(2), 307-317.
  • FAO (2024). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#home
  • Farajollahi, Z., Eisvand, H. R., Nazarian-Firouzabadi, F., Nasrollahi, A. H. (2023). Nano-Fe nutrition improves soybean physiological characteristics, yield, root features and water productivity in different planting dates under drought stress conditions. Industrial Crops and Products, 198, 116698.
  • Fatema, M. K., Mamun, M. A. A., Sarker, U., Hossain, M. S., Mia, M. A. B., Roychowdhury, R., Ercisli, S., Marc, R. A., Babalola, O. O., Karim, M. A. (2023). Assessing morpho-physiological and biochemical markers of soybean for drought tolerance potential. Sustainability, 15(2), 1427.
  • Fehr, W. R. (1980). Soybean. In: Fehr, W.R., Hadley, H.H. (Eds) Hybridization of Crop Plants. The American Society of Agronomy Inc, Wisconsin, USA, 589-599.
  • Fehr, W. R., Caviness, C. E., Burmood, D. T., Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science, 11(6), 929-931.
  • Gebre, M. G., Earl, H. J. (2021). Soil water deficit and fertilizer placement effects on root biomass distribution, soil water extraction, water use, yield, and yield components of soybean [Glycine max (L.) Merr.] grown in 1-m rooting columns. Frontiers in Plant Science, 12, 581127. https://doi.org/10.3389/fpls.2021.581127
  • Guo, Y., Huang, G., Wei, Z., Feng, T., Zhang, K., Zhang, M., Li, Z., Zhou, Y., Duan, L. (2023). Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages. Agricultural Water Management, 279, 108185.
  • Guzzo, M. C., Costamagna, C., Salloum, M. S., Rotundo, J. L., Monteoliva, M. I., Luna, C. M. (2021). Morpho‐physiological traits associated with drought responses in soybean. Crop Science, 61(1), 672-688.
  • He, J., Du, Y. L., Wang, T., Turner, N. C., Yang, R. P., Jin, Y., Xi, Y., Zhang, C., Cui, T., Fang, X., Li, F. M. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agricultural Water Management, 179, 236-245.
  • Hniličková, H., Hnilička, F., Orsák, M., Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil and Environment, 65, 90-96.
  • Hufstetler, E. V., Boerma, H. R., Carter, T. E., Earl, H. J. (2007). Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Science, 47(1), 25-35.
  • Ingwers, M. W., Steketee, C. J., Yadav, S. K., Li, Z. (2022). Relationships among carbon isotope composition, growth, and foliar nitrogen in soybean. Journal of Crop Improvement, 36(90-107). https://doi.org/10.1080/15427528.2021.1910092.
  • Kaya, G. (2023). Ameliorative effects of foliar potassium nitrate on the growth, physiological, and stomatal properties of lettuce plants under salinity stress. Journal of Plant Nutrition, 46(12), 2882-2892.
  • Khan, A., Sovero, V., Gemenet, D. (2016). Genome-assisted breeding for drought resistance. Current Genomics, 17, 330-342. https://doi.org/10.2174/1389202917999160211101417
  • Liyanage, D. K., Chathuranga, I., Mori, B. A., Thilakarathna, M. S. (2022). A simple, semi-automated, gravimetric method to simulate drought stress on plants. Agronomy, 12, 349. https://doi.org/10.3390/agronomy12020349
  • Lumactud, R. A., Dollete, D., Liyanage, D. K., Szczyglowski, K., Hill, B., Thilakarathna, M. S. (2023). The effect of drought stress on nodulation, plant growth, and nitrogen fixation in soybean during early plant growth. Journal of Agronomy and Crop Science, 209, 345-354. https://doi.org/10.1111/jac.12627
  • Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S., Maleki, R. (2013). Physiological performance of soybean cultivars under drought stress. Bulletin of Environment, Pharmacology and Life Sciences, 2(6), 38-44.
  • Miranda, R. S., Fonseca, B. S. F., Pinho, D. S., Batista, J. Y. N., Brito, R. R., Silva, E. M., Ferreira, W. S., Costa J. H., Lopes, M. S., Sousa, R. H. B., Neves, L. F., Penha, J. A. F., Santos, A. S., Lima, J. J. P., Paula-Marinho, S. O., Neto, F. A., Aguiar, E. S., Santos, C. P., Gomes-Filho, E. (2023). Selection of soybean and cowpea cultivars with superior performance under drought using growth and biochemical aspects. Plants, 12(17), 3134.
  • Mishra, S., Patidar, D. (2023). Effect of drought stress on growth of soybean under seedling stage. International Journal of Economic Plants, 10(3), 231-245.
  • Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., Bheemanahalli R. (2023). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13(1), 1277.
  • Pratap, A., Gupta, S. K., Kumar, J., Solanki, R. K. (2012). Soybean. In: Gupta, S.K. (Eds) Technological Innovations in Major World Oil Crops, Volume 1: Breeding. Springer New York, USA, 293-321.
  • Puangbut, D., Jogloy, S., Vorasoot, N., Akkasaeng, C., Kesmala, T., Rachaputi, R. C., Wright, G. C., Patanothai, A. (2009). Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agricultural Water Management, 96(10), 1460-1466. https://doi.org/10.1016/j.agwat.2009.04.018
  • Sadok, W., Sinclair, T. R. (2011). Crops yield increase under water-limited conditions: review of recent physiological advances for soybean genetic improvement. Advances in Agronomy, 113, 325-351.
  • Samarah, N. H., Mullen, R. E., Cianzio, S. R., Scott, P. (2006). Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Science, 46, 2141-2150.
  • Simondi, S., Casaretto, E., Quero, G., Ceretta, S., Bonnecarrère, V., Borsani, O. (2022). A simple and accurate method based on a water-consumption model for phenotyping soybean genotypes under hydric deficit conditions. Agronomy, 12(3), 575.
  • Sincik, M., Oral, H. S., Göksoy, T., Turan, Z. M. (2008). Determination of some yield and quality characters of different soybean (Glycine max L. Merr.) lines under Bursa ecological conditions. Journal of Agricultural Faculty of Uludağ University, 22(1), 55-62.
  • Sinclair, T. R., Messina, C. D., Beatty, A., Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102(2), 475-482.
  • Tiwari, P. N., Tiwari, S., Sapre, S., Tripathi, N., Payasi, D. K., Singh, M., Thakur, S., Sharma, M., Tiwari, S., Tripathi, M. K. (2023). Prioritization of physio-biochemical selection indices and yield-attributing traits toward the acquisition of drought tolerance in chickpea (Cicer arietinum L.). Plants, 12(18), 3175.
  • TUIK (2024). Turkish Statistical Institute. https://biruni.tuik.gov.tr/medas/?locale=tr
  • Wijewardana, C., Alsajri, F. A., Irby, J. T., Krutz, L. J., Golden, B. R., Henry, W. B. (2021). Water deficit effects on soybean root morphology and early-season vigor. Agronomy, 9(12), 836. https://doi.org/10.3390/agronomy9120836
  • Yan, C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S., Sun, X. (2020). Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought tolerant coefficient of yield. B.M.C. Plant Biology, 20, 321.
  • Yang, X., Kwon, H., Kim, M. Y., Lee, S. H. (2023). RNA-seq profiling in leaf tissues of two soybean (Glycine max [L.] Merr.) cultivars that show contrasting responses to drought stress during early developmental stages. Molecular Breeding, 43(5), 1-19.
  • Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O. A., Carol, P. (2017). Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 218, 26-34.
Year 2025, Volume: 9 Issue: 1, 13 - 21
https://doi.org/10.31015/2025.1.2

Abstract

References

  • Ahmadizadeh, M., Valizadeh, M., Zaefizadeh, M., Shahbazi, H. (2011). Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. Journal of Applied Sciences Research, 7(3), 236-246.
  • Aziez, A. F. (2023). Growth response of soybean (Glycine max L.) under drought stress condition. Research on Crops, 24(1), 73-81.
  • Basal, O., Szabó, A., Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22, 100135.
  • Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizman, M., Shadid, M.R., Alotaibi, M., Al-Ashkar, İ., Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 2020(10), 16975. https://doi.org/10.1038/s41598-020-73489-z.
  • Cosmulescu, S., Scrieciu, F., Manda, M. (2020). Determination of leaf characteristics in different medlar genotypes using the ImageJ program. Horticultural Science, 47(2), 117-21. https://doi.org/10.17221/97/2019-HORTSCI
  • Delavar, E. G., Faramarzi, A., Ajalli, J., Nazari, N., Abdi, M. (2023). Piriformospora indica symbiosis and iron oxide nanoparticles alleviates drought stress in soybean plants through improved on photosynthetic gas exchange and sucrose phosphate synthase and acid phosphatase. Romanian Agricultural Research, 40, 1-14.
  • Desclaux, D., Huynh, T. T., Roumet, P. (2000). Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Science, 40(3), 716-722.
  • Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C., Liu, L. (2019). A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26, 2006-2017.
  • Ergin, N., Uzun, O., Kaya, M. D. (2023). Changes in plant growth and mineral concentrations of soybean cultivars under waterlogging stress. Journal of Elementology, 28(2), 307-317.
  • FAO (2024). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#home
  • Farajollahi, Z., Eisvand, H. R., Nazarian-Firouzabadi, F., Nasrollahi, A. H. (2023). Nano-Fe nutrition improves soybean physiological characteristics, yield, root features and water productivity in different planting dates under drought stress conditions. Industrial Crops and Products, 198, 116698.
  • Fatema, M. K., Mamun, M. A. A., Sarker, U., Hossain, M. S., Mia, M. A. B., Roychowdhury, R., Ercisli, S., Marc, R. A., Babalola, O. O., Karim, M. A. (2023). Assessing morpho-physiological and biochemical markers of soybean for drought tolerance potential. Sustainability, 15(2), 1427.
  • Fehr, W. R. (1980). Soybean. In: Fehr, W.R., Hadley, H.H. (Eds) Hybridization of Crop Plants. The American Society of Agronomy Inc, Wisconsin, USA, 589-599.
  • Fehr, W. R., Caviness, C. E., Burmood, D. T., Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science, 11(6), 929-931.
  • Gebre, M. G., Earl, H. J. (2021). Soil water deficit and fertilizer placement effects on root biomass distribution, soil water extraction, water use, yield, and yield components of soybean [Glycine max (L.) Merr.] grown in 1-m rooting columns. Frontiers in Plant Science, 12, 581127. https://doi.org/10.3389/fpls.2021.581127
  • Guo, Y., Huang, G., Wei, Z., Feng, T., Zhang, K., Zhang, M., Li, Z., Zhou, Y., Duan, L. (2023). Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages. Agricultural Water Management, 279, 108185.
  • Guzzo, M. C., Costamagna, C., Salloum, M. S., Rotundo, J. L., Monteoliva, M. I., Luna, C. M. (2021). Morpho‐physiological traits associated with drought responses in soybean. Crop Science, 61(1), 672-688.
  • He, J., Du, Y. L., Wang, T., Turner, N. C., Yang, R. P., Jin, Y., Xi, Y., Zhang, C., Cui, T., Fang, X., Li, F. M. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agricultural Water Management, 179, 236-245.
  • Hniličková, H., Hnilička, F., Orsák, M., Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil and Environment, 65, 90-96.
  • Hufstetler, E. V., Boerma, H. R., Carter, T. E., Earl, H. J. (2007). Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Science, 47(1), 25-35.
  • Ingwers, M. W., Steketee, C. J., Yadav, S. K., Li, Z. (2022). Relationships among carbon isotope composition, growth, and foliar nitrogen in soybean. Journal of Crop Improvement, 36(90-107). https://doi.org/10.1080/15427528.2021.1910092.
  • Kaya, G. (2023). Ameliorative effects of foliar potassium nitrate on the growth, physiological, and stomatal properties of lettuce plants under salinity stress. Journal of Plant Nutrition, 46(12), 2882-2892.
  • Khan, A., Sovero, V., Gemenet, D. (2016). Genome-assisted breeding for drought resistance. Current Genomics, 17, 330-342. https://doi.org/10.2174/1389202917999160211101417
  • Liyanage, D. K., Chathuranga, I., Mori, B. A., Thilakarathna, M. S. (2022). A simple, semi-automated, gravimetric method to simulate drought stress on plants. Agronomy, 12, 349. https://doi.org/10.3390/agronomy12020349
  • Lumactud, R. A., Dollete, D., Liyanage, D. K., Szczyglowski, K., Hill, B., Thilakarathna, M. S. (2023). The effect of drought stress on nodulation, plant growth, and nitrogen fixation in soybean during early plant growth. Journal of Agronomy and Crop Science, 209, 345-354. https://doi.org/10.1111/jac.12627
  • Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S., Maleki, R. (2013). Physiological performance of soybean cultivars under drought stress. Bulletin of Environment, Pharmacology and Life Sciences, 2(6), 38-44.
  • Miranda, R. S., Fonseca, B. S. F., Pinho, D. S., Batista, J. Y. N., Brito, R. R., Silva, E. M., Ferreira, W. S., Costa J. H., Lopes, M. S., Sousa, R. H. B., Neves, L. F., Penha, J. A. F., Santos, A. S., Lima, J. J. P., Paula-Marinho, S. O., Neto, F. A., Aguiar, E. S., Santos, C. P., Gomes-Filho, E. (2023). Selection of soybean and cowpea cultivars with superior performance under drought using growth and biochemical aspects. Plants, 12(17), 3134.
  • Mishra, S., Patidar, D. (2023). Effect of drought stress on growth of soybean under seedling stage. International Journal of Economic Plants, 10(3), 231-245.
  • Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., Bheemanahalli R. (2023). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13(1), 1277.
  • Pratap, A., Gupta, S. K., Kumar, J., Solanki, R. K. (2012). Soybean. In: Gupta, S.K. (Eds) Technological Innovations in Major World Oil Crops, Volume 1: Breeding. Springer New York, USA, 293-321.
  • Puangbut, D., Jogloy, S., Vorasoot, N., Akkasaeng, C., Kesmala, T., Rachaputi, R. C., Wright, G. C., Patanothai, A. (2009). Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agricultural Water Management, 96(10), 1460-1466. https://doi.org/10.1016/j.agwat.2009.04.018
  • Sadok, W., Sinclair, T. R. (2011). Crops yield increase under water-limited conditions: review of recent physiological advances for soybean genetic improvement. Advances in Agronomy, 113, 325-351.
  • Samarah, N. H., Mullen, R. E., Cianzio, S. R., Scott, P. (2006). Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Science, 46, 2141-2150.
  • Simondi, S., Casaretto, E., Quero, G., Ceretta, S., Bonnecarrère, V., Borsani, O. (2022). A simple and accurate method based on a water-consumption model for phenotyping soybean genotypes under hydric deficit conditions. Agronomy, 12(3), 575.
  • Sincik, M., Oral, H. S., Göksoy, T., Turan, Z. M. (2008). Determination of some yield and quality characters of different soybean (Glycine max L. Merr.) lines under Bursa ecological conditions. Journal of Agricultural Faculty of Uludağ University, 22(1), 55-62.
  • Sinclair, T. R., Messina, C. D., Beatty, A., Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102(2), 475-482.
  • Tiwari, P. N., Tiwari, S., Sapre, S., Tripathi, N., Payasi, D. K., Singh, M., Thakur, S., Sharma, M., Tiwari, S., Tripathi, M. K. (2023). Prioritization of physio-biochemical selection indices and yield-attributing traits toward the acquisition of drought tolerance in chickpea (Cicer arietinum L.). Plants, 12(18), 3175.
  • TUIK (2024). Turkish Statistical Institute. https://biruni.tuik.gov.tr/medas/?locale=tr
  • Wijewardana, C., Alsajri, F. A., Irby, J. T., Krutz, L. J., Golden, B. R., Henry, W. B. (2021). Water deficit effects on soybean root morphology and early-season vigor. Agronomy, 9(12), 836. https://doi.org/10.3390/agronomy9120836
  • Yan, C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S., Sun, X. (2020). Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought tolerant coefficient of yield. B.M.C. Plant Biology, 20, 321.
  • Yang, X., Kwon, H., Kim, M. Y., Lee, S. H. (2023). RNA-seq profiling in leaf tissues of two soybean (Glycine max [L.] Merr.) cultivars that show contrasting responses to drought stress during early developmental stages. Molecular Breeding, 43(5), 1-19.
  • Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O. A., Carol, P. (2017). Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 218, 26-34.
There are 42 citations in total.

Details

Primary Language English
Subjects Industrial Crops
Journal Section Research Articles
Authors

Nurgül Ergin 0000-0003-3105-7504

Engin Gökhan Kulan 0000-0002-7147-6896

Pınar Harmancı 0000-0003-4193-0450

Mehmet Demir Kaya 0000-0002-4681-2464

Early Pub Date January 30, 2025
Publication Date
Submission Date November 8, 2024
Acceptance Date December 14, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Ergin, N., Kulan, E. G., Harmancı, P., Kaya, M. D. (n.d.). Morpho-physiological and water use performance of soybean cultivars under drought stress at early growth stages. International Journal of Agriculture Environment and Food Sciences, 9(1), 13-21. https://doi.org/10.31015/2025.1.2


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27