Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 53 - 59, 30.04.2019
https://doi.org/10.35229/jaes.530139

Öz

Kaynakça

  • 1. Abbott, W.S., (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.2. Akiner, M.M., Demirci, B., Babuadze, G., Robert, V.  Schaffner F., (2016). Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea Region increases risk of chikungunya, dengue, and zika outbreaks in Europe. PLOS Neglected Tropical Diseases, 10, e0004664. 3. Al–Mehmadi, R.M., (2011). Larvicidal, histopathological and ultra – structure studies of Matricharia chamomell extract rift valley fever mosquito Culex quinquefasciatus (Diptera: Culicidae). Journal of Entomology, 8, 63-72.4. Al–Mehmadi, R.M  Al- Khalaf. A. A., (2008). Oviposition deterrent and skin repellent activites of Artemisa herba alba, Matricharia chamomella and Mellia azedarach against C. quinquefasciatus. Saudi.Journal of Biological Sciences, 15, 97 -104.5. Ali, A., Tabanca, N., Demirci, B., Blythe, E.K., Ali, Z., Baser, K.H.C.  Khan, I.A., (2015). Chemical composition and biological activity of four Salvia essential oils and individual compounds against two species of mosquitoes. Journal of Agriculture and Food Chemistry, 63, 447−456.6. Amor, I.L., Boubaker, J., Sgaier, M.B., Bhouri, I.S.W, Neffati, A., Kilani, S., Bouhlel, I., Ghedira, K.  Chekir-Ghedira, L., (2009). Phytochemistry and biological activities of Phlomis species, Journal of Ethnopharmacology, 125, 183–202.7. Assı, M., Usta, J., Mounımne, Y., Aboul-Ela, M.  El-Lakany, A., (2017). Phytochemical study and the antiproliferative activity of Inula vulgarıs species grown in lebanon. International Journal of Pharmacy and Pharmaceutical Sciences, 9, 75-83.8. Aşkun, T., Başer, K.H.C., Tümen, G.  Kürkçüoğlu, M., (2010). Characterization of essential oils of some Salvia species and their antimycobacterial activities. Turkish Journal of Biology, 34, 89-95.9. Ayoughi, F., Barzegar, M., Sahari, M.A.  Naghdibadi, H., (2011). Chemical compositions of essential oils of Artemisia dracunculus L. and endemic Matricaria chamomilla L. and an evaluation of their antioxidative effects. Journal of Agriculture Science and Technology, 13, 79-88.10. Boulogne, I., Petit, P., Ozier-Lafontaine, H., Desfontaines, L.  Loranger-Merciris, G., (2012). Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chemistry Letter, 10, 325–347.11. Boussaada, O., Kamel, M.B.H., Ammar, S., Haouas, D., Mıghrı, Z.  Helal, A.N., (2008). Insecticidal activity of some Asteraceae plant extracts against. Tribolium confusum Bulletin of Insectology, 61, 283-289.12. Bossche, V.  Coetzer, J.A., (2008). Climate change and animal health in Africa. Revue scientifique et technique, 27, 551–562.13. Chalchat, J.C., Gorunovic, M.S., Petrovic, S.D. & Maksimovic, Z.A., (2001). Chemical Compositions of Two Wild Species of the Genus Salvia L. from Yugoslavia: Salvia aefhiopis and Salvia verficillafa. Essential Oil Research, 13, 416-418.14. Cheah, S.X., Tay, J.W., Chan, L.K. & Jaal, Z., (2013). Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research, 112, 3275–3282.15. Crans, W.J., (2004). A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. Journal of Vector Ecology, 1, 1–10.16. Çalmaşur, Ö., Aslan, İ.  Şahin., F., (2006). Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Industrial Crops and Products, 23, 140–146.17. Çetin, H., Cinbilgel, I., Yanikoglu, A.  Gokceoglu, M., (2006) Larvicidal Activity of some Labiatae (Lamiaceae) Plant Extracts from Turkey. Phytotherapy Research, 20, 1088–1090.18. Çetin, H., Çilek, J.E., Aydın, L.  Yanıkoğlu, A., (2009). Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus (Acari: Ixodidae). Veterinary Parasitology, 160, 359–361.19. Dmitrienko, S.G., Kudrinskaya, V.A.  Apyari, V.V., (2012). Methods of extraction, preconcentration, and determination of quercetin. Journal of Analytical Chemistry 67, 299–311.20. Dinesh, D.S., Kumari, S., Pandit, V., Kumar, J., Kumari, N., Kumar, P., Hassan, F., Kumar, V.  Das, P., (2015). Insecticidal effect of plant extracts on Phlebotomus argentipes (Diptera: Psychodidae) in Bihar, India. Indian Journal of Medicinal Research, 142, 95–100.21. Gad, A.A.  El-DaKheel, A.A., (2009). Larvicidal activities of Cinnamomum osmophloeum and Matricharia chamomella extracts against the filarial mosquito Culex quinquefasciatus (Diptera:Culicidae) and their effects on its haemogram. The Egyptian Science Magazine, 6(1/2), 8-15. 22. Ghosh, A., Chowdhury, N.  Chandra, G., (2012). Plant extracts as potential larvicides. Indian Journal of Medical Research, 135, 581-598.23. Govindarajan, M., Sivakumar, R., Rajeswary, M.  Yogalakshmi, K., (2013). Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experimental Parasitology, 134, 7–11.24. Gubler, D.J., (1998). Resurgent vector-borne diseases as a global health problem. Emerging Infectious Diseases, 4, 1–9.25. Gün, S.Ş., Çinbilgel, I., Öz, E.  Çetin H., (2011). Larvcidal acitivity of some Salvia L. (Labiatae) plant extracts against the mosquito Culex pipiens L. (Diptera: Culicidae). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 17(Suppl A), 61-65.26. Hatipoğlu, S.D., Zorlu, N., Dirmenci, T., Gören, A.C., Özturk, T.  Topçu, G., (2016). Determination of volatile organic compounds in fourty five Salvia Species by thermal desorption-GC-MS technique. Records of Natural Products, 10, 659-700.27. He, Q., Liu, X.C., Sun, R.Q., Deng, Z.W., Du, S.S.  Liu, Z.L., (2014). Mosquito Larvicidal Constituents from the Ethanol Extract of Inula racemosa Hook. f. Roots against Aedes albopictus. Journal of Chemistry, 2014(Article ID 738796), 1-6. 28. Hikal, W.M., Baeshen, R.S.  Said-Al Ahl, H.A.H. (2017). Botanical insecticide as simple extractives for pest control. Cogent Biology, 3, 1404274.29. Khodadad, P.K.  Mehdi, R.A., (2007). Biological activities of chamomile (Matricaria chamomile) flowers’ extract against the survival and egg laying of the cattle fever tick (Acari Ixodidae). Journal of Zhejiang University: Science B, 8, 693-696.30. Kim, D.Y., Won, K.J., Hwang, D.I., Park, S.M.,Kim, H.B. & Lee, H.M., (2018). Chemical Composition of Essential Oil from Erigeron annuus (L.) Pers. Flower and its Effect on Migration and Proliferation in Keratinocyte. Journal of Essential Oil Bearing Plants, 21, 1146-1154.31. Koliopoulos, G., Pitarokili, D., Kioulos, E., Michaelakis, A. & Tzakou O., (2010). Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitology Research, 107, 327-335.32. Klempner, M.S., Unnasch, T.R.  Hu, L.T., (2007). Taking a bite out of vector-transmitted infectious diseases. The New England Journal of Medicine, 356, 2567–2569.33. Kovendan, K., Murugan, K., Kumar, A.N., Vincent, S. & Hwang, J.S., (2012). Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research, 110, 669–678.34. Kumar, V., Mathela, C.S., Tewari, G., Singh, D., Tewari, A.K.  Bisht, K.S., (2014). Chemical composition and antifungal activity of essential oils from three Himalayan Erigeron species. LWT - Food Science and Technology, 56, 278-283.35. López, V., Jäger, A.K., Akerreta, S., Cavero, R.Y. & Calvo, M.I., (2010). Antioxidant Activity and Phenylpropanoids of Phlomis lychnitis L.: A Traditional Herbal Tea. Plant Foods for Human Nutrition, 65, 179–185.36. Luthria, D.L., Ramakrishnan, V.  Banerji, A., (1993). Insect antifeedant activity of furochromones: Structure-activity relationships. Journal of Natural Products, 56, 671–675.37. Magharri, E., Razavi, S.M., Ghorbani, E., Nahar, L.  Sarker, S.D., (2015). Chemical composition, some allelopathic aspects, free-radical-scavenging property and antifungal activity of the volatile oil of the flowering tops of Leucanthemum vulgare Lam. Records of Natural Products, 9, 538-545.38. Milam, C.D., Farris, J.L.  Wilhide, J.D., (2000). Evaluating mosquito control pesticides for effect on target and nontarget organisms. Archives of Environmental Contamination and Toxicology, 39, 324–328.39. Mokrani, A.  Madani, K., (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68–76.40. Nauen, R., (2007). Insecticide resistance in disease vectors of public health importance. Pest Management Science, 63, 628–633.41. Nazaruk, J.  Kalemba, D., (2009). Chemical composition of the essential oils from the roots of Erigeron acris L. and Erigeron annuus (L.) Pers. Molecules, 14, 2458-2465.42. Orhan, I., Kartal, M., Naz, Q., Ejaz, A., Yilmaz, G., Kan, Y., Konuklugil, B., Sener, B.  Choudhary, M.I., (2007). Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chemistry, 103, 1247–1254.43. Pavela, R., (2008). Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae), Parasitology Research, 102, 555–559.44. Pitarokili, D., Tzakou, O. . Loukis, A., (2006). Essential oil composition of Salvia verticillata, S. verbenaca, S. glutinosa and S. Candidissima growing wild in Greece. Flavour and Fragrange Journal, 21, 670–673.45. Polatoğlu, K., Karakoç, E.C., Yücel, Y.Y., Gücel, S., Demirci, B., Demirci, F., Başer, K.H.C., (2017). Insecticidal activity of Salvia veneris Hedge. Essential oil against coleopteran stored product insects and Spodoptera exigua(Lepidoptera). Industrial Crops and Products, 97, 93–100.46. Roberts, D.R.  Andre, R.G., (1994). Insecticide resistance issues in vector borne disease control. The American Journal of Tropical Medicine and Hygiene, 50, 21–34.47. Sakthivadivel, M., Gunasekaran, P., Sivakumar, M., Arivoli, S., Raveen, R.  Tennyson, S., (2015). Mosquito larvicidal activity of Hyptis suaveolens (L.) Poit (Lamiaceae) aerial extracts against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Journal of Medicinal Plants Studies, 3, 1-5.48. Sampson, B.J., Tabanca, N., Kirimer, N., Demirci, B., Baser, K.H.C., Khan, I.A., Spiers, J.M.  Wedge, D.E., (2005). Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Management Science, 61, 1122–1128. 49. Sefidkon, F.  Khajavi, M.S., (1999). Chemical composition of the essential oils of two Salvia species from Iran: Salvia verticillata L. and Salvia santolinifolia Boiss. Flavour Fragrange Journal, 14, 77-78. 50. Selvi, E.K., Turumtay, H., Demir, A. & Turumtay, E.A., (2018). Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Analytical Letters, 51, 3-15.51. Singh, O., Khanam, Z., Misra, N.  Srivastava, M., (2011). Chamomile (Matricaria chamomilla L.): An overview. Pharmacognosy Review, 5, 82–95.52. Sukeksi, L.  Sarah, M., (2016). Characterizations and extraction of polyphenols from residual pulp of pink guava as source of antioxidants. Journal of Engineering and Applied Sciences, 11, 5209–5216.53. Tepe, B., Eminağaogğlu, O., Akpulat, H.A.  Aydin, E., (2007). Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chemistry, 100, 985–989.54. W.H.O., (2005). Guidelines for laboratory and field testing of mosquito larvicides, WHO/CDS/WHOPES/GCDPP/2005.13, Geneva, Switzerland.

Larvacidal Activity of Some Medicinal Plants Naturally Growing in Turkey Against Aedes albopictus (Diptera: Culicidae)

Yıl 2019, , 53 - 59, 30.04.2019
https://doi.org/10.35229/jaes.530139

Öz

Massive use of chemical based insecticides led to detrimental effects on the public healt and environment. This situation, environment
friendly and biodegradable
natural products of plant
origin
alternatives to synthetic larvacids
have received attention as agents for vector control.
Thus, many researchers have studied on alternative methods for
pest control instead of chemical ones.



In this study, some medicinal valuable plants naturally
growing in Turkey
were selected for this purpose and
investigated the larvicidal effect against Asian tiger mosquito Aedes albopictus larvae.
Bioassays were carried
out by appliying late 3th to early 4th instar larvae of Aedes albopictus to two different dose
of plant extracts. The larval mortality was counted after 24 and 48 h after
experiments. Bioassay results revealed that Leucanthemum
vulgare
was the most effective for ethyl acetate extract in 500 ppm
concentration, 100 % for 24 h, 100 % for 48 h. Salvia vertisillata induced a second high mortality after 24 h
treatment for two doses of both extracts. Inula
vulgaris
and
Matricaria chamomilla produced high and
moderate mortality for 500 ppm dose of both extracts, respecitvely.



Our results
evidenced that the high larvicidal activity was detected products obtained from
crude extracts with ethyl acateta and methyl alcohol of Salvia verticillata, Leucanthemum
vulgare
, Inula vulgaris and
Matricaria
chamomilla
.
But need to be further study about possible candidate species for new and safer
control products against mosquito control. 

Kaynakça

  • 1. Abbott, W.S., (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.2. Akiner, M.M., Demirci, B., Babuadze, G., Robert, V.  Schaffner F., (2016). Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea Region increases risk of chikungunya, dengue, and zika outbreaks in Europe. PLOS Neglected Tropical Diseases, 10, e0004664. 3. Al–Mehmadi, R.M., (2011). Larvicidal, histopathological and ultra – structure studies of Matricharia chamomell extract rift valley fever mosquito Culex quinquefasciatus (Diptera: Culicidae). Journal of Entomology, 8, 63-72.4. Al–Mehmadi, R.M  Al- Khalaf. A. A., (2008). Oviposition deterrent and skin repellent activites of Artemisa herba alba, Matricharia chamomella and Mellia azedarach against C. quinquefasciatus. Saudi.Journal of Biological Sciences, 15, 97 -104.5. Ali, A., Tabanca, N., Demirci, B., Blythe, E.K., Ali, Z., Baser, K.H.C.  Khan, I.A., (2015). Chemical composition and biological activity of four Salvia essential oils and individual compounds against two species of mosquitoes. Journal of Agriculture and Food Chemistry, 63, 447−456.6. Amor, I.L., Boubaker, J., Sgaier, M.B., Bhouri, I.S.W, Neffati, A., Kilani, S., Bouhlel, I., Ghedira, K.  Chekir-Ghedira, L., (2009). Phytochemistry and biological activities of Phlomis species, Journal of Ethnopharmacology, 125, 183–202.7. Assı, M., Usta, J., Mounımne, Y., Aboul-Ela, M.  El-Lakany, A., (2017). Phytochemical study and the antiproliferative activity of Inula vulgarıs species grown in lebanon. International Journal of Pharmacy and Pharmaceutical Sciences, 9, 75-83.8. Aşkun, T., Başer, K.H.C., Tümen, G.  Kürkçüoğlu, M., (2010). Characterization of essential oils of some Salvia species and their antimycobacterial activities. Turkish Journal of Biology, 34, 89-95.9. Ayoughi, F., Barzegar, M., Sahari, M.A.  Naghdibadi, H., (2011). Chemical compositions of essential oils of Artemisia dracunculus L. and endemic Matricaria chamomilla L. and an evaluation of their antioxidative effects. Journal of Agriculture Science and Technology, 13, 79-88.10. Boulogne, I., Petit, P., Ozier-Lafontaine, H., Desfontaines, L.  Loranger-Merciris, G., (2012). Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chemistry Letter, 10, 325–347.11. Boussaada, O., Kamel, M.B.H., Ammar, S., Haouas, D., Mıghrı, Z.  Helal, A.N., (2008). Insecticidal activity of some Asteraceae plant extracts against. Tribolium confusum Bulletin of Insectology, 61, 283-289.12. Bossche, V.  Coetzer, J.A., (2008). Climate change and animal health in Africa. Revue scientifique et technique, 27, 551–562.13. Chalchat, J.C., Gorunovic, M.S., Petrovic, S.D. & Maksimovic, Z.A., (2001). Chemical Compositions of Two Wild Species of the Genus Salvia L. from Yugoslavia: Salvia aefhiopis and Salvia verficillafa. Essential Oil Research, 13, 416-418.14. Cheah, S.X., Tay, J.W., Chan, L.K. & Jaal, Z., (2013). Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research, 112, 3275–3282.15. Crans, W.J., (2004). A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. Journal of Vector Ecology, 1, 1–10.16. Çalmaşur, Ö., Aslan, İ.  Şahin., F., (2006). Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Industrial Crops and Products, 23, 140–146.17. Çetin, H., Cinbilgel, I., Yanikoglu, A.  Gokceoglu, M., (2006) Larvicidal Activity of some Labiatae (Lamiaceae) Plant Extracts from Turkey. Phytotherapy Research, 20, 1088–1090.18. Çetin, H., Çilek, J.E., Aydın, L.  Yanıkoğlu, A., (2009). Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus (Acari: Ixodidae). Veterinary Parasitology, 160, 359–361.19. Dmitrienko, S.G., Kudrinskaya, V.A.  Apyari, V.V., (2012). Methods of extraction, preconcentration, and determination of quercetin. Journal of Analytical Chemistry 67, 299–311.20. Dinesh, D.S., Kumari, S., Pandit, V., Kumar, J., Kumari, N., Kumar, P., Hassan, F., Kumar, V.  Das, P., (2015). Insecticidal effect of plant extracts on Phlebotomus argentipes (Diptera: Psychodidae) in Bihar, India. Indian Journal of Medicinal Research, 142, 95–100.21. Gad, A.A.  El-DaKheel, A.A., (2009). Larvicidal activities of Cinnamomum osmophloeum and Matricharia chamomella extracts against the filarial mosquito Culex quinquefasciatus (Diptera:Culicidae) and their effects on its haemogram. The Egyptian Science Magazine, 6(1/2), 8-15. 22. Ghosh, A., Chowdhury, N.  Chandra, G., (2012). Plant extracts as potential larvicides. Indian Journal of Medical Research, 135, 581-598.23. Govindarajan, M., Sivakumar, R., Rajeswary, M.  Yogalakshmi, K., (2013). Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experimental Parasitology, 134, 7–11.24. Gubler, D.J., (1998). Resurgent vector-borne diseases as a global health problem. Emerging Infectious Diseases, 4, 1–9.25. Gün, S.Ş., Çinbilgel, I., Öz, E.  Çetin H., (2011). Larvcidal acitivity of some Salvia L. (Labiatae) plant extracts against the mosquito Culex pipiens L. (Diptera: Culicidae). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 17(Suppl A), 61-65.26. Hatipoğlu, S.D., Zorlu, N., Dirmenci, T., Gören, A.C., Özturk, T.  Topçu, G., (2016). Determination of volatile organic compounds in fourty five Salvia Species by thermal desorption-GC-MS technique. Records of Natural Products, 10, 659-700.27. He, Q., Liu, X.C., Sun, R.Q., Deng, Z.W., Du, S.S.  Liu, Z.L., (2014). Mosquito Larvicidal Constituents from the Ethanol Extract of Inula racemosa Hook. f. Roots against Aedes albopictus. Journal of Chemistry, 2014(Article ID 738796), 1-6. 28. Hikal, W.M., Baeshen, R.S.  Said-Al Ahl, H.A.H. (2017). Botanical insecticide as simple extractives for pest control. Cogent Biology, 3, 1404274.29. Khodadad, P.K.  Mehdi, R.A., (2007). Biological activities of chamomile (Matricaria chamomile) flowers’ extract against the survival and egg laying of the cattle fever tick (Acari Ixodidae). Journal of Zhejiang University: Science B, 8, 693-696.30. Kim, D.Y., Won, K.J., Hwang, D.I., Park, S.M.,Kim, H.B. & Lee, H.M., (2018). Chemical Composition of Essential Oil from Erigeron annuus (L.) Pers. Flower and its Effect on Migration and Proliferation in Keratinocyte. Journal of Essential Oil Bearing Plants, 21, 1146-1154.31. Koliopoulos, G., Pitarokili, D., Kioulos, E., Michaelakis, A. & Tzakou O., (2010). Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitology Research, 107, 327-335.32. Klempner, M.S., Unnasch, T.R.  Hu, L.T., (2007). Taking a bite out of vector-transmitted infectious diseases. The New England Journal of Medicine, 356, 2567–2569.33. Kovendan, K., Murugan, K., Kumar, A.N., Vincent, S. & Hwang, J.S., (2012). Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research, 110, 669–678.34. Kumar, V., Mathela, C.S., Tewari, G., Singh, D., Tewari, A.K.  Bisht, K.S., (2014). Chemical composition and antifungal activity of essential oils from three Himalayan Erigeron species. LWT - Food Science and Technology, 56, 278-283.35. López, V., Jäger, A.K., Akerreta, S., Cavero, R.Y. & Calvo, M.I., (2010). Antioxidant Activity and Phenylpropanoids of Phlomis lychnitis L.: A Traditional Herbal Tea. Plant Foods for Human Nutrition, 65, 179–185.36. Luthria, D.L., Ramakrishnan, V.  Banerji, A., (1993). Insect antifeedant activity of furochromones: Structure-activity relationships. Journal of Natural Products, 56, 671–675.37. Magharri, E., Razavi, S.M., Ghorbani, E., Nahar, L.  Sarker, S.D., (2015). Chemical composition, some allelopathic aspects, free-radical-scavenging property and antifungal activity of the volatile oil of the flowering tops of Leucanthemum vulgare Lam. Records of Natural Products, 9, 538-545.38. Milam, C.D., Farris, J.L.  Wilhide, J.D., (2000). Evaluating mosquito control pesticides for effect on target and nontarget organisms. Archives of Environmental Contamination and Toxicology, 39, 324–328.39. Mokrani, A.  Madani, K., (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68–76.40. Nauen, R., (2007). Insecticide resistance in disease vectors of public health importance. Pest Management Science, 63, 628–633.41. Nazaruk, J.  Kalemba, D., (2009). Chemical composition of the essential oils from the roots of Erigeron acris L. and Erigeron annuus (L.) Pers. Molecules, 14, 2458-2465.42. Orhan, I., Kartal, M., Naz, Q., Ejaz, A., Yilmaz, G., Kan, Y., Konuklugil, B., Sener, B.  Choudhary, M.I., (2007). Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chemistry, 103, 1247–1254.43. Pavela, R., (2008). Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae), Parasitology Research, 102, 555–559.44. Pitarokili, D., Tzakou, O. . Loukis, A., (2006). Essential oil composition of Salvia verticillata, S. verbenaca, S. glutinosa and S. Candidissima growing wild in Greece. Flavour and Fragrange Journal, 21, 670–673.45. Polatoğlu, K., Karakoç, E.C., Yücel, Y.Y., Gücel, S., Demirci, B., Demirci, F., Başer, K.H.C., (2017). Insecticidal activity of Salvia veneris Hedge. Essential oil against coleopteran stored product insects and Spodoptera exigua(Lepidoptera). Industrial Crops and Products, 97, 93–100.46. Roberts, D.R.  Andre, R.G., (1994). Insecticide resistance issues in vector borne disease control. The American Journal of Tropical Medicine and Hygiene, 50, 21–34.47. Sakthivadivel, M., Gunasekaran, P., Sivakumar, M., Arivoli, S., Raveen, R.  Tennyson, S., (2015). Mosquito larvicidal activity of Hyptis suaveolens (L.) Poit (Lamiaceae) aerial extracts against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Journal of Medicinal Plants Studies, 3, 1-5.48. Sampson, B.J., Tabanca, N., Kirimer, N., Demirci, B., Baser, K.H.C., Khan, I.A., Spiers, J.M.  Wedge, D.E., (2005). Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Management Science, 61, 1122–1128. 49. Sefidkon, F.  Khajavi, M.S., (1999). Chemical composition of the essential oils of two Salvia species from Iran: Salvia verticillata L. and Salvia santolinifolia Boiss. Flavour Fragrange Journal, 14, 77-78. 50. Selvi, E.K., Turumtay, H., Demir, A. & Turumtay, E.A., (2018). Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Analytical Letters, 51, 3-15.51. Singh, O., Khanam, Z., Misra, N.  Srivastava, M., (2011). Chamomile (Matricaria chamomilla L.): An overview. Pharmacognosy Review, 5, 82–95.52. Sukeksi, L.  Sarah, M., (2016). Characterizations and extraction of polyphenols from residual pulp of pink guava as source of antioxidants. Journal of Engineering and Applied Sciences, 11, 5209–5216.53. Tepe, B., Eminağaogğlu, O., Akpulat, H.A.  Aydin, E., (2007). Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chemistry, 100, 985–989.54. W.H.O., (2005). Guidelines for laboratory and field testing of mosquito larvicides, WHO/CDS/WHOPES/GCDPP/2005.13, Geneva, Switzerland.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Emine Kılıçkaya Selvi 0000-0003-0291-5362

Asu Usta 0000-0002-1826-9599

Muhammet Mustafa Akıner 0000-0002-7658-3236

Yayımlanma Tarihi 30 Nisan 2019
Gönderilme Tarihi 21 Şubat 2019
Kabul Tarihi 11 Nisan 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kılıçkaya Selvi, E., Usta, A., & Akıner, M. M. (2019). Larvacidal Activity of Some Medicinal Plants Naturally Growing in Turkey Against Aedes albopictus (Diptera: Culicidae). Journal of Anatolian Environmental and Animal Sciences, 4(1), 53-59. https://doi.org/10.35229/jaes.530139


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS