Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 154 - 160, 30.06.2020
https://doi.org/10.35229/jaes.687327

Öz

Kaynakça

  • 1. Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Science of the Total Environment, 532, 112-126.
  • 2. Ai, L. & Jiang, J. (2012). Removal of methylene blue from aqueous solution with Self-Assembled Cylindrical Graphene–Carbon Nanotube Hybrid. Chem. Eng. J. 192, 156–163.
  • 3. Aristilde, L., Marichal, C., Miéhé-Brendlé, J., Lanson, B. & Charlet, L. (2010). Interactions of Oxytetracycline with a Smectite Clay: A spectroscopic study with molecular simulations. Environ. Sci. Technol. 44, 7839–7845.
  • 4. Backhaus, T., Altenburger, R., Boedeker, W., Faust, M., Scholze, M., & Grimme, L. H. (2000). Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environmental Toxicology and Chemistry, 19(9), 2348-2356.
  • 5. Chen, K., Zhou, J., (2014). Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere, 95, 604–612.
  • 6. Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters, 11(3), 209-227.
  • 7. Diwan, V., Hanna, N., Purohit, M., Chandran, S., Riggi, E., Parashar, V., Tamhankar, A.J. & Stålsby Lundborg, C. (2018). Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of Escherichia coli isolates from water and sediments of the Kshipra River in Central India. International journal of environmental research and public health, 15(6), 1281.
  • 8. Elizalde-Velázquez, A., Gómez-Oliván, L. M., Galar-Martínez, M., Islas-Flores, H., Dublán-García, O., & SanJuan-Reyes, N. (2016). Amoxicillin in the Aquatic environment, its fate and environmental risk. Environmental Health, 247.
  • 9. Eldem, T. and Hıncal, A. A. 1987. Nitrofurantoin, FABAD J. Pharm. SCi. 12, 170-178. (in Turkish).
  • 10. Flaherty, C.M. & Dodson, S.I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61, 200–207.
  • 11. Grenni, P., Ancona, V., & Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25-39.
  • 12. Halling-Sørensen, B. (2000). Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 40(7), 731-739.
  • 13. Hong, P., Al-Jassim, N., Ansari, M. & Mackie, R. (2013). Environmental and public health implications of water reuse: antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes. Antibiotics, 2, 367–399.
  • 14. ISO 6341: Water Quality - Determination of the Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea) (15 March 1982).
  • 15. Ji, K., Kim, S., Han, S., Seo, J., Lee, S., Park, Y., Choi, K., Kho, Y.L., Kim, P.G., Park, J., 2012. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: Are the current environmental concentrations safe? Ecotoxicology, 21, 2031–2050.
  • 16. Johansson, C. H., Janmar, L., & Backhaus, T. (2014). Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria. Aquatic toxicology, 156, 248-258.
  • 17. Jung, J., Kim, Y., Kim, J., Jeong, D. H., & Choi, K. (2008). Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna. Ecotoxicology, 17(1), 37-45.
  • 18. Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment, Ecological Indicators, 8, 1-13.
  • 19. Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms, 7(6), 180. 20. Kümmerer, K., Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 9 (12), 1203–1214.
  • 21. Kümmerer, K. (2009a). Antibiotics in the aquatic environment--a review--part I. Chemosphere, 75(4), 417–34. doi:10.1016/j.chemosphere.2008.11.086.
  • 22. Kümmerer, K. (2009b). Antibiotics in the aquatic environment--a review--part II. Chemosphere, 75(4), 435–41. doi:10.1016/j.chemosphere.2008.12.006.
  • 23. Lai, H.-T., Hou, J.-H., Su, C.-I., Chen, C.-L. (2009). Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicol. Environ. Saf. 72 (2), 329–334.
  • 24. Liu, M. K., Liu, Y. Y., Bao, D. D., Zhu, G., Yang, G. H., Geng, J. F., & Li, H. T. (2017). Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Scientific Reports, 7, 43717. 25. Martins, A.C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A., Bandoch, G.F., Asefa, T., Visentainer, J.V., Almeida, V.C., (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem. Eng. J., 260, 291–299.
  • 26. Microtox® Manual, Microbics Corporation. 1992. “A Toxicity Testing Handbook.” 1–5, Carlsbad, CA, USA.
  • 27. Migliore, L.; Civitareale, C.; Brambilla, G.; Dojmi Di Delupis, G. (1997). Toxicity of several important agricultural antibiotics to Artemia. Water Res., 31, 1801–1806.
  • 28. Robinson, A. A., Belden, J. B., & Lydy, M. J. (2005). Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry: An International Journal, 24(2), 423-430.
  • 29. Santos, L.H.M.L.M., Araújo, A.N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M.C.B.S.M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1-3), 45–95. doi:10.1016/j.jhazmat.2009.10.100.
  • 30. Tongur, S., & Yildirim, R. (2015). Acute toxicity assessment of antibiotics in water by luminiscence bacteria and Lepidium sativum. Procedia Earth and Planetary Science, 15, 468-473.
  • 31. Topal, M., Uslu G., Arslan Topal, E.I. & Öbek, E. (2015). Antibiyotikler ve kullanım alanları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 31(3), 121-127. (in Turkish).
  • 32. URL 1: http://aciscience.com/docs/Linevol%20Daphnia%20OECD202.pdf , Study Report Daphnia magna, Acute lmmobilization Test Effect of Linevol on the immobilization of Daphnia magna in closed vessels, Test guideline: OECD 202, GLP-Code of Testing Facility: SDA-004/4-20. Accessed on: January, 2020.
  • 33. URL 2: http://www.wikizeroo.com/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQW1veGljaWxsaW4 Accessed on: January, 2020.
  • 34. URL 3: http://alsglobal.com.tr/website/var/assets/media-tr/pdf/ecotoxicity-tests-at-a-glance_2015_tur.pdf. (in Turkish) Accessed on: January, 2020.
  • 35. URL 4: https://www.toku-e.com/Antibiotic-Solubility-Data-Table.aspx Accessed on: January, 2020.
  • 36. URL 5: https://read.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en#page1 , OECD Guideline for Testing of Chemicals, Daphnia sp., Acute Immobilisation Test. Accessed on: January, 2020.
  • 37. Wang, H. Z., Luo, Y., Xu, W. Q., Zhou, Q. X., Tang, B. H., & Wang, Y. Y. (2008). Ecotoxic effects of tetracycline and chlortetracycline on aquatic organisms. Journal of Agro-Environment Science, 4, 048.
  • 38. Watkinson, A. J., Murby, E. J., & Costanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water research, 41(18), 4164-4176.
  • 39. Wollenberger, L., Halling-Sørensen, B., Kusk, K.O. (2000). Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40, 723–730.
  • 40. Yasser, E. N., & Adli, A. (2015). Toxicity of single and mixtures of antibiotics to cyanobacteria. Journal of Environmental & Analytical Toxicology, 5(3), 1.
  • 41. Yıldırım, R. (2015). Antibiyotik İlaçların Su Ortamına Olan Etkilerinin Akut Toksisite Testleri Yardımıyla Değerlendirilmesi, Yüksek Lisans Tezi, SÜ Fen Bilimleri Enstitüsü (in Turkish).
  • 42. Zhu, X., Zhu, L., Chen, Y., & Tian, S. (2009). Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. Journal of nanoparticle research, 11(1), 67-75.

The Toxic Effects of Commonly Used Antibiotics in Turkey on Aquatic Organisms

Yıl 2020, , 154 - 160, 30.06.2020
https://doi.org/10.35229/jaes.687327

Öz

Antibiotic pollution has the potential to directly affect the health of people, animals and the ecosystem. The presence of antibiotics in the environment can impede the structure of microbial community, having both acute and chronic effects on microbial and planktonic communities. In Turkey, the three most prevalent antibiotics detected in aquatic environment are Amoxicillin, Tetracycline and Nitrofurantoin, but there is almost no information on their toxicity on natural microbial communities. Particularly, there is no data available for marine microorganisms. While the amount of toxicity levels for humans is well known, there is less knowledge about toxic concentration in wildlife, especially smaller and more vulnerable organisms. Consequently, the purpose of this current study is to evaluate the acute toxicity of Amoxicillin, Tetracycline and Nitrofurantoin to the natural water ecosystem, a complex ecological group comprising a variety of bacterial and planktonic species. It is seen that antibiotics are practically non-toxic (>100 mg/L) in the classification of acute toxicity according to Daphnia magna. It is not possible to mention about toxicity in this case, but when considering the toxicity of antibiotics among themselves, the ranking is like Tetracycline > Nitrofurantoin > Amoxicillin. The same toxicity ranking is encountered in the acute toxicity test made with Vibrio fischeri. However, in the acute toxicity test made with Vibrio fischeri, the results are toxic for Tetracycline (2.53 mg/L), Nitrofurantoin (15.67 mg/L) and Amoxicillin (56.23 mg/L). While antibiotics have an acute effect on bacterial structures, they tend to have a chronic effect and bioaccumulation properties on Daphnids.

Kaynakça

  • 1. Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Science of the Total Environment, 532, 112-126.
  • 2. Ai, L. & Jiang, J. (2012). Removal of methylene blue from aqueous solution with Self-Assembled Cylindrical Graphene–Carbon Nanotube Hybrid. Chem. Eng. J. 192, 156–163.
  • 3. Aristilde, L., Marichal, C., Miéhé-Brendlé, J., Lanson, B. & Charlet, L. (2010). Interactions of Oxytetracycline with a Smectite Clay: A spectroscopic study with molecular simulations. Environ. Sci. Technol. 44, 7839–7845.
  • 4. Backhaus, T., Altenburger, R., Boedeker, W., Faust, M., Scholze, M., & Grimme, L. H. (2000). Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environmental Toxicology and Chemistry, 19(9), 2348-2356.
  • 5. Chen, K., Zhou, J., (2014). Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere, 95, 604–612.
  • 6. Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters, 11(3), 209-227.
  • 7. Diwan, V., Hanna, N., Purohit, M., Chandran, S., Riggi, E., Parashar, V., Tamhankar, A.J. & Stålsby Lundborg, C. (2018). Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of Escherichia coli isolates from water and sediments of the Kshipra River in Central India. International journal of environmental research and public health, 15(6), 1281.
  • 8. Elizalde-Velázquez, A., Gómez-Oliván, L. M., Galar-Martínez, M., Islas-Flores, H., Dublán-García, O., & SanJuan-Reyes, N. (2016). Amoxicillin in the Aquatic environment, its fate and environmental risk. Environmental Health, 247.
  • 9. Eldem, T. and Hıncal, A. A. 1987. Nitrofurantoin, FABAD J. Pharm. SCi. 12, 170-178. (in Turkish).
  • 10. Flaherty, C.M. & Dodson, S.I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61, 200–207.
  • 11. Grenni, P., Ancona, V., & Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25-39.
  • 12. Halling-Sørensen, B. (2000). Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 40(7), 731-739.
  • 13. Hong, P., Al-Jassim, N., Ansari, M. & Mackie, R. (2013). Environmental and public health implications of water reuse: antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes. Antibiotics, 2, 367–399.
  • 14. ISO 6341: Water Quality - Determination of the Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea) (15 March 1982).
  • 15. Ji, K., Kim, S., Han, S., Seo, J., Lee, S., Park, Y., Choi, K., Kho, Y.L., Kim, P.G., Park, J., 2012. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: Are the current environmental concentrations safe? Ecotoxicology, 21, 2031–2050.
  • 16. Johansson, C. H., Janmar, L., & Backhaus, T. (2014). Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria. Aquatic toxicology, 156, 248-258.
  • 17. Jung, J., Kim, Y., Kim, J., Jeong, D. H., & Choi, K. (2008). Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna. Ecotoxicology, 17(1), 37-45.
  • 18. Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment, Ecological Indicators, 8, 1-13.
  • 19. Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms, 7(6), 180. 20. Kümmerer, K., Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 9 (12), 1203–1214.
  • 21. Kümmerer, K. (2009a). Antibiotics in the aquatic environment--a review--part I. Chemosphere, 75(4), 417–34. doi:10.1016/j.chemosphere.2008.11.086.
  • 22. Kümmerer, K. (2009b). Antibiotics in the aquatic environment--a review--part II. Chemosphere, 75(4), 435–41. doi:10.1016/j.chemosphere.2008.12.006.
  • 23. Lai, H.-T., Hou, J.-H., Su, C.-I., Chen, C.-L. (2009). Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicol. Environ. Saf. 72 (2), 329–334.
  • 24. Liu, M. K., Liu, Y. Y., Bao, D. D., Zhu, G., Yang, G. H., Geng, J. F., & Li, H. T. (2017). Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Scientific Reports, 7, 43717. 25. Martins, A.C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A., Bandoch, G.F., Asefa, T., Visentainer, J.V., Almeida, V.C., (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem. Eng. J., 260, 291–299.
  • 26. Microtox® Manual, Microbics Corporation. 1992. “A Toxicity Testing Handbook.” 1–5, Carlsbad, CA, USA.
  • 27. Migliore, L.; Civitareale, C.; Brambilla, G.; Dojmi Di Delupis, G. (1997). Toxicity of several important agricultural antibiotics to Artemia. Water Res., 31, 1801–1806.
  • 28. Robinson, A. A., Belden, J. B., & Lydy, M. J. (2005). Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry: An International Journal, 24(2), 423-430.
  • 29. Santos, L.H.M.L.M., Araújo, A.N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M.C.B.S.M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1-3), 45–95. doi:10.1016/j.jhazmat.2009.10.100.
  • 30. Tongur, S., & Yildirim, R. (2015). Acute toxicity assessment of antibiotics in water by luminiscence bacteria and Lepidium sativum. Procedia Earth and Planetary Science, 15, 468-473.
  • 31. Topal, M., Uslu G., Arslan Topal, E.I. & Öbek, E. (2015). Antibiyotikler ve kullanım alanları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 31(3), 121-127. (in Turkish).
  • 32. URL 1: http://aciscience.com/docs/Linevol%20Daphnia%20OECD202.pdf , Study Report Daphnia magna, Acute lmmobilization Test Effect of Linevol on the immobilization of Daphnia magna in closed vessels, Test guideline: OECD 202, GLP-Code of Testing Facility: SDA-004/4-20. Accessed on: January, 2020.
  • 33. URL 2: http://www.wikizeroo.com/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQW1veGljaWxsaW4 Accessed on: January, 2020.
  • 34. URL 3: http://alsglobal.com.tr/website/var/assets/media-tr/pdf/ecotoxicity-tests-at-a-glance_2015_tur.pdf. (in Turkish) Accessed on: January, 2020.
  • 35. URL 4: https://www.toku-e.com/Antibiotic-Solubility-Data-Table.aspx Accessed on: January, 2020.
  • 36. URL 5: https://read.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en#page1 , OECD Guideline for Testing of Chemicals, Daphnia sp., Acute Immobilisation Test. Accessed on: January, 2020.
  • 37. Wang, H. Z., Luo, Y., Xu, W. Q., Zhou, Q. X., Tang, B. H., & Wang, Y. Y. (2008). Ecotoxic effects of tetracycline and chlortetracycline on aquatic organisms. Journal of Agro-Environment Science, 4, 048.
  • 38. Watkinson, A. J., Murby, E. J., & Costanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water research, 41(18), 4164-4176.
  • 39. Wollenberger, L., Halling-Sørensen, B., Kusk, K.O. (2000). Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40, 723–730.
  • 40. Yasser, E. N., & Adli, A. (2015). Toxicity of single and mixtures of antibiotics to cyanobacteria. Journal of Environmental & Analytical Toxicology, 5(3), 1.
  • 41. Yıldırım, R. (2015). Antibiyotik İlaçların Su Ortamına Olan Etkilerinin Akut Toksisite Testleri Yardımıyla Değerlendirilmesi, Yüksek Lisans Tezi, SÜ Fen Bilimleri Enstitüsü (in Turkish).
  • 42. Zhu, X., Zhu, L., Chen, Y., & Tian, S. (2009). Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. Journal of nanoparticle research, 11(1), 67-75.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

V. Zülal Sönmez 0000-0002-7488-2996

Nüket Sivri 0000-0002-4269-5950

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 10 Şubat 2020
Kabul Tarihi 14 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sönmez, V. Z., & Sivri, N. (2020). The Toxic Effects of Commonly Used Antibiotics in Turkey on Aquatic Organisms. Journal of Anatolian Environmental and Animal Sciences, 5(2), 154-160. https://doi.org/10.35229/jaes.687327


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS