Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Interlaboratory Precision of Acute Toxicity Tests Using Reference Toxicant Formaldehyde

Yıl 2016, Cilt 1, Sayı 3, 96 - 99, 24.12.2016
https://doi.org/10.35229/jaes.277868

Öz

Acute toxicity test, which takes place among rapid toxicity tests and is conducted through bioluminescent bacteria, has been included in many countries' standards thanks to its test duration, sample volume, cost-efficiency and result sensitivity. Sensitivity of Microtox® Reagent, being one of the commercial kits of bioluminescent bacteria, can be detected via reference toxicants (control). Various reference toxicants (control) are recommended by the manufacturer company to be used in Microtox® acute toxicity test. This study aims to use formaldehyde as alternative reference toxicant (control) in Microtox® acute toxicity test. Acute toxicity of formaldehyde, according to Vibrio fischeri, was investigated on 5, 15 and 30 minutes of inhibition periods. EC50 values were found as 2,30±0,60 mg/l; 2,14±0,63 mg/l and 2,17±0,70 mg/l by inhibition periods, respectively. Standard deviation of EC50 values found for each sample group differed between 0,01-0,47. According to mean acute toxicity results of all formaldehyde inhibition periods, 0,10 unit deviation was found in 5 minutes of results. For 15 and 30 minutes of inhibition periods, mean value of unit deviation was found as 0,06 and 0,04 which showed closer values to each other and the mean value. The investigated toxicants show the performance of pipetting sensitivity of reagent, analyzer and test operator.

Kaynakça

  • Blaise, C. & Férard, J.F., 2005, Small-scale Freshwater Toxicity Investigations, Springer Netherlands.
  • EPA, 2002, U.S Environmental Protection Agency, Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5. Edition, Washington.
  • García-Montaño, J., Domenech, X., García-Hortal, J.A., Torrades, F., & Peral, J., 2008, The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal, Journal of Hazardous Materials, 154(1), 484-490.
  • Gerhardt, A., 2002, Bioindicator species and their use in biomonitoring, Environmental Monitoring I, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Oxford: Eolss Publishers.
  • Guilhermino, L., Diamantino, T., Silva, M. C., & Soares, A. M. V. M., 2000, Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity?. Ecotoxicology and Environmental Safety, 46(3), 357-362.
  • Harkey, G. A., & Young, T. M., 2000, Effect of soil contaminant extraction method in determining toxicity using the Microtox® assay. Environmental toxicology and chemistry, 19(2), 276-282.
  • Johnson, B. T., & Long, E. R.,1998, Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach. Environmental Toxicology and Chemistry, 17(6), 1099-1106.
  • Liu, M. C., Chen, C. M., Cheng, H. Y., Chen, H. Y., Su, Y. C., & Hung, T. Y., 2002, Toxicity of different industrial effluents in Taiwan: a comparison of the sensitivity of Daphnia similis and Microtox®. Environmental toxicology, 17(2), 93-97.
  • Loibner A.P., Szolar O.H.J., Braun R. & Hirmann D., 2004, Toxicity testing of 16 priority Polycyclic Aromatic Hydrocarbons using Lumistox, Environ Toxicol Chem., 31(3), 557-564.
  • Ma, X.Y., Wang, X.C., Ngo, H.H., Guo, W., Wu, M.N. & Wang, N., 2014, Bioassay based luminescent bacteria: Interferences, improvements, and applications, Science of the Total Environment, 468, 1-11.
  • Microtox® Manual, 1992, Microbics Corporation, Carlsbad, USA.
  • Parvez, S., Venkataraman, C. & Mukherji, S., 2006, A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals, Environment International, 32(2), 265-268.
  • Paździor, K., Wrębiak, J., Klepacz-Smółka, A., Gmurek, M., Bilińska, L., Kos, L., Sójka-Ledakowicz, J. & Ledakowicz, S., 2016, Influence of ozonation and biodegradation on toxicity of industrial textile wastewater, Journal of Environmental Management, (in press).
  • Rand, G. M.,1995, Fundamentals of aquatic toxicology: Effects, environmental fate and risk assessment, CRC Press.
  • Rigol, A., Latorre A, Lacorte, S. & Barcelo, D., 2004, Bioluminescence inhibition assays for toxicity screening of wood extractives and biocides in paper mill process water, Environ Toxicol Chem., 23(2), 339-347.
  • Sponza, D.T., 2002, Incorporation of toxicity tests into the Turkish industrial discharge monitoring systems, Archives of Environmental Contamination and Toxicology, 43(2), 186-197.
  • Toussaint, M.W., Shedd, T.R., van der Schalie, W.H. & Leather, G.R., 1995, A comparison of standard acute toxicity tests with rapid‐screening toxicity tests, Environmental Toxicology and Chemistry, 14(5), 907-915.
  • URL 1: http://www.formaldehit.net/formaldehit-kullanim-alanlari.html Ziyaret tarihi: 02.12.2016 / 15:16.
  • Van der Grinten, E., Pikkemaat, M.G., van den Brandhof, E.J., Stroomberg, G.J. & Kraak, M.H., 2010, Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics, Chemosphere, 80(1), 1-6.
  • Vasseur, P., Bois, F., Ferard, J.F. &Rast, C., 1986, Influence of physicochemical parameters on the Microtox® test response, Toxicity Assessment, 1(3), 283-300.

Akut Toksisite Testi Hassasiyetinin Belirlenmesinde Referans Toksik Madde Olarak Formaldehit Kullanımı

Yıl 2016, Cilt 1, Sayı 3, 96 - 99, 24.12.2016
https://doi.org/10.35229/jaes.277868

Öz

Hızlı toksisite testlerinden; test süresi, numune hacmi, uygun maliyeti ve sonuç hassasiyeti nedeniyle; biyolüminesans bakteri ile yapılan akut toksisite testi, birçok ülke standartlarında yerini almıştır. Biyolüminesans bakterinin ticari bir kiti olan Microtox® Reagent’ın hassasiyeti, referans toksik madde (kontrol) sayesinde tespit edilebilmektedir. Microtox® akut toksisite testinde kullanılmak üzere üretici firma tarafından farklı referans toksik maddeler (kontrol)  önerilmektedir. Bu çalışmada, Microtox® akut toksisite testinde kullanılmak üzere formaldehitin alternatif referans toksik madde (kontrol) olarak kullanımı hedeflenmiştir. Formaldehitin Vibrio fischeri’ye göre olan akut toksisitesi, 5, 15 ve 30. dakika inhibisyon sürelerinde çalışılmıştır. İnhibisyon sürelerine göre EC50 değerleri sırasıyla 2,30±0,60 mg/l; 2,14±0,63 mg/l ve 2,17±0,70 mg/l bulunmuştur. Her bir örnekleme grubu için bulunan EC50 değerlerinin, ortalamadan sapmaları ise 0,01-0.47 arasında değişim göstermiştir. Formaldehitin tüm inhibisyon süreleri için ortalama akut toksisite sonucuna bakıldığında da; 5. dakikalık sonuçta 0,10 birim sapma görülmektedir. 15 ve 30 dakikalık inhibisyon süreleri için ise; ortalama sırasıyla 0,06 ve 0,04 birim sapma ile ortalamaya ve birbirlerine daha yakın değerler aldığı tespit edilmiştir. Çalışılan referans toksik maddeler; reagent, analizör ve test operatörünün pipetleme hassasiyetinin performansını göstermektedir.

Kaynakça

  • Blaise, C. & Férard, J.F., 2005, Small-scale Freshwater Toxicity Investigations, Springer Netherlands.
  • EPA, 2002, U.S Environmental Protection Agency, Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5. Edition, Washington.
  • García-Montaño, J., Domenech, X., García-Hortal, J.A., Torrades, F., & Peral, J., 2008, The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal, Journal of Hazardous Materials, 154(1), 484-490.
  • Gerhardt, A., 2002, Bioindicator species and their use in biomonitoring, Environmental Monitoring I, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Oxford: Eolss Publishers.
  • Guilhermino, L., Diamantino, T., Silva, M. C., & Soares, A. M. V. M., 2000, Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity?. Ecotoxicology and Environmental Safety, 46(3), 357-362.
  • Harkey, G. A., & Young, T. M., 2000, Effect of soil contaminant extraction method in determining toxicity using the Microtox® assay. Environmental toxicology and chemistry, 19(2), 276-282.
  • Johnson, B. T., & Long, E. R.,1998, Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach. Environmental Toxicology and Chemistry, 17(6), 1099-1106.
  • Liu, M. C., Chen, C. M., Cheng, H. Y., Chen, H. Y., Su, Y. C., & Hung, T. Y., 2002, Toxicity of different industrial effluents in Taiwan: a comparison of the sensitivity of Daphnia similis and Microtox®. Environmental toxicology, 17(2), 93-97.
  • Loibner A.P., Szolar O.H.J., Braun R. & Hirmann D., 2004, Toxicity testing of 16 priority Polycyclic Aromatic Hydrocarbons using Lumistox, Environ Toxicol Chem., 31(3), 557-564.
  • Ma, X.Y., Wang, X.C., Ngo, H.H., Guo, W., Wu, M.N. & Wang, N., 2014, Bioassay based luminescent bacteria: Interferences, improvements, and applications, Science of the Total Environment, 468, 1-11.
  • Microtox® Manual, 1992, Microbics Corporation, Carlsbad, USA.
  • Parvez, S., Venkataraman, C. & Mukherji, S., 2006, A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals, Environment International, 32(2), 265-268.
  • Paździor, K., Wrębiak, J., Klepacz-Smółka, A., Gmurek, M., Bilińska, L., Kos, L., Sójka-Ledakowicz, J. & Ledakowicz, S., 2016, Influence of ozonation and biodegradation on toxicity of industrial textile wastewater, Journal of Environmental Management, (in press).
  • Rand, G. M.,1995, Fundamentals of aquatic toxicology: Effects, environmental fate and risk assessment, CRC Press.
  • Rigol, A., Latorre A, Lacorte, S. & Barcelo, D., 2004, Bioluminescence inhibition assays for toxicity screening of wood extractives and biocides in paper mill process water, Environ Toxicol Chem., 23(2), 339-347.
  • Sponza, D.T., 2002, Incorporation of toxicity tests into the Turkish industrial discharge monitoring systems, Archives of Environmental Contamination and Toxicology, 43(2), 186-197.
  • Toussaint, M.W., Shedd, T.R., van der Schalie, W.H. & Leather, G.R., 1995, A comparison of standard acute toxicity tests with rapid‐screening toxicity tests, Environmental Toxicology and Chemistry, 14(5), 907-915.
  • URL 1: http://www.formaldehit.net/formaldehit-kullanim-alanlari.html Ziyaret tarihi: 02.12.2016 / 15:16.
  • Van der Grinten, E., Pikkemaat, M.G., van den Brandhof, E.J., Stroomberg, G.J. & Kraak, M.H., 2010, Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics, Chemosphere, 80(1), 1-6.
  • Vasseur, P., Bois, F., Ferard, J.F. &Rast, C., 1986, Influence of physicochemical parameters on the Microtox® test response, Toxicity Assessment, 1(3), 283-300.

Ayrıntılar

Konular Fen
Bölüm Makaleler
Yazarlar

V. Zülal SÖNMEZ>
İstanbul Üniveristesi
Türkiye


Nüket SİVRİ>
İstanbul Üniveristesi
0000-0002-4269-5950
Türkiye

Yayımlanma Tarihi 24 Aralık 2016
Gönderilme Tarihi 13 Aralık 2016
Kabul Tarihi
Yayınlandığı Sayı Yıl 2016, Cilt 1, Sayı 3

Kaynak Göster

APA Sönmez, V. Z. & Sivri, N. (2016). Interlaboratory Precision of Acute Toxicity Tests Using Reference Toxicant Formaldehyde . Journal of Anatolian Environmental and Animal Sciences , 1 (3) , 96-99 . DOI: 10.35229/jaes.277868


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg