Araştırma Makalesi
BibTex RIS Kaynak Göster

Tavuk Kökenli Enterococcus faecium ve Lactobacillus Türlerinin Probiyotik Özelliklerinin Araştırılması

Yıl 2020, Cilt: 5 Sayı: 3, 356 - 365, 30.09.2020
https://doi.org/10.35229/jaes.763996

Öz

Bu çalışmada potansiyel probiyotik bakterilerden olan Lactobacillus spp. ve Enterococcus faecium’un sağlıklı tavuklardan izolasyonu ve izole edilen bakterilerin probiyotik olarak kullanılma potansiyellerinin araştırılması amaçlandı. Çalışmada Samsun’da bulunan ticari bir kanatlı hayvan mezbahasında kesim aşamasında olan 50 adet tavuğa ait bağırsak incelendi. Bağırsak mukozalarından alınan örneklerden Lactobacillus spp. ve E. faecium bakterilerinin izolasyonu amacıyla selektif besi yerlerine ekim yapıldı. Şüpheli kolonilerin identifikasyonu PCR ile yapıldı. İzole edilen bakterilerin % 0,5-1,0 safra konsantrasyonlarına direnci için Safra Tolerans Testi gerçekleştirildi. İzolatların pH 3 ve pH 5’e direnç durumları pH Tolerans Testi ile belirlendi. İzolatların hidrofobisiteleri %0,03 Kongo Kırmızılı agar kullanılarak incelendi. İzolatların antibiyotik dirençlilikleri dokuz farklı antibiyotik diski kullanılarak Kirby Bauer Disk Difüzyon Testi ile belirlendi. İzolatların patojen Escherichia coli izolatına karşı antagonistik etkilerinin araştırılmasında Radyal Difüzyon yöntemi kullanıldı. Örneklerden 20 adet E. faecium ve 9’u L. acidophilus olmak üzere 21 adet Lactobacillus spp. izole edildi. İzolatların tümünün % 0,5-1,0 safra konsantrasyonlarına, pH 3-5’e dirençli oldukları saptandı. İzolatların tümünün hidrofobik karakterde olduğu, ancak hiçbirisinin E.coli’ye karşı antagonistik etki göstermediği belirlendi. E.faecium izolatlarının 8 tanesi 8 antibiyotiğe karşı dirençli olarak değerlendirildi. Lactobacillus spp. izolatlarının 1 tanesinin 5 antibiyotiğe ve L. acidophilus izolatlarından da 1 tanesinin 7 antibiyotiğe dirençli olduğu belirlendi ve çoklu dirence sahip suşlar olarak değerlendirildi. Çalışma sonucunda tüm izolatların hidrofobik özellikte olduğu, safra ve düşük pH’ya dirençli olduğu fakat hiçbirisinin E.coli’ye karşı test edilen koşullarda etkili olmadığı belirlendi. Elde edilen sonuçlar, E. faecium, L. acidophilus ve Lactobacillus spp. izolatlarından çoklu antibiyotik direnci gösterenlerin probiyotik olarak kullanılabilir özellikte olduğunu ve in vivo koşullarda etkinlik denemeleri yapılması gerekliliğini göstermektedir.

Destekleyen Kurum

Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı

Proje Numarası

PYO.VET.1904.16.016

Teşekkür

Bu çalışma, PYO.VET.1904.16.016 proje numarası ile Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı tarafından desteklenmiştir.

Kaynakça

  • Aarestrup, F.M., Agerso, Y., Gerner-Smidt, P., Madsen, M. & Jensen, L.B. (2000). Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagnostic Microbiology and Infectious Diseases, 37(2), 127–137.
  • Abdel-Daim, A., Hassouna, N., Hafez, M., Ashor, M.S. & Aboulwafa, M.M. (2013). Antagonistic activity of Lactobacillus isolates against Salmonella typhi in vitro. Biomedical Research International, 15, 680605–680617.
  • Balcazar, J.L., Vendrell, D., De Blas, I., Ruiz-Zarzuela, I., Mu´zquiz, J.L. & Girone´s, O. (2008). Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 278, 188–191.
  • CLSI. (2013). M02-A11 and M100-S23 Package - Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Eleventh Edition&Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement.
  • Dicks, L.M.T. (1993). Lactic acide bacteria: Understanding the microorganism. The keys to successfull use in maximising anti-coliform and anti-Salmonella activity. In: Biotechnology in the Feed Industy. Proceeding of Alltech’s Ninth Annual Sympossium, 151–168.
  • Di̇li̇k, Z. & İstanbulluoğlu, E. (2010). Studies on phenotyping and genotyping characterization of Enterococcus spp. isolated from entansive broiler farms and rural poultry establishments. Bornova Veteriner Kontrol ve Araştırma Enstitüsü Dergisi, 32(46), 37–46.
  • Fuller, R. (1989). A review. Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365–378.
  • Fuller, R. (2004). Reasons for the apparent variation in the probiotic response. Biologist, 51(4), 232.
  • Garriga, M., Pascual, M., Monfort, J.M. & Hugas, M. (1998). Selection of lactobacilli for chicken probiotic adjuncts. Journal of Applied Microbiology, 84(1), 125–132.
  • Grene, J.D. & Klaenhammer, T.R. (1994). Factors involved in adherence of lactobacilli to human Caco-2 cells. Applied and Environmental Microbiology, 60, 4487–4494.
  • Gülhan, T., Boynukara, B., Çiftci ,A., Söğüt, M.Ü. & Fındık, A. (2015). Characterization of Enterococcus faecalis isolates originating from different sources for their virulence factors and genes, antibiotic resistance patterns, genotypes and biofilm production. Iranian Journal of Veterinary Research, 16(3), 261–266.
  • Hassanzadazar, H., Ali, E., Karim, M. & Javad, H. (2012). Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese. Veterinary Research Forum, 3(3), 181–185.
  • Hjelm, M., Bergh, O., Riaza, A., Nielsen, J., Melcheiorsen, J., Jensen, S., Duncan, H., Ahrens, P., Birkbeck, H. & Gram, L. (2004). Selection and identification of autochthonous candidate probiotic bacteria from Turbot Larvae (Scophthalmus maximus) rearing units system. Applied Microbiology, 27, 360–371.
  • Jackson, C.R., Fedorka-Cray, P.J. & Barrett, J.B. (2004). Use of a genus- and species-specific multiplex PCR for identification of enterococci. Journal of Clinical Microbiology, 42(8), 3558–3565.
  • Jin, L.Z., Ho, Y.W., Abdullah, N. & Jalaludin, S. (1998). Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Letters in Applied Microbiology, 27, 183–185.
  • Karahan, A.G. & Çakmakçı, M.L. (1995). Civciv körbağırsağından izole edilen bazı laktobasil suşlarının çeşitli antibiyotiklere dirençleri. Tarım Bilimleri Dergisi, 1(1), 7–12.
  • Ke, D., Picard, F.O.J., Martineau, F., Me´nard, C., Roy, P.H., Ouellette, M. & Bergeron, M,G. (1999). Development of a PCR Assay for Rapid Detection of Enterococci. Journal of Clinical Microbiology, 37(11), 3497–3503.
  • Kim, C.J., Namkung, H., An, M.S. & Paik, I.K. (1988). Supplementation of probiotics to the broiler diets containing moldy corn. Korean Journal of Animal Science, 30, 542–548.
  • Kuleaşan, H. & Çakmakçı, M.L. (2002). Laktobasiller tarafından üretilen bakteriyosinlerin tanımlanması, sınıflandırılması ve bunların bazı gıda kaynaklı patojenler üzerindeki etkilerinin belirlenmesi. Ankara Üniversitesi Doktora Tezi, 79s, Ankara.
  • Kung, L. (1990). Microbes and enzymes. Feed International, 11(8), 10–16.
  • Lonkar, P., Harne, S.D., Kalorey, D.R. & Kurkure, N.V. (2005). Isolation, in vitro antibacterial activity, bacterial sensitivity and plasmid profile of Lactobacilli. Asian-Australasian Journal of Animal Science, 18(9), 1336–1342.
  • Markiewicz, L. & Biedrzycka E. (2005). Identification of Lactobacillus and Bifidobacterium species with PCR applied to quality control of fermented dairy beverages. Polish Journal of Food and Nutritional Science, 55(4), 359–365.
  • Marteau, P., Minekus, M., Havenoar, R. & Veld, J.H.J. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile. Journal of Dairy Science, 80, 1031–1037.
  • Mombelli, B. & Gismondo, M.R. (2000). The use of probiotics in medical practise. Antimicrobial Agents, 16, 531–536.
  • Mulder, R.A.W. (1991). Probiotics as a tool against Salmonella contamination. Misset-World Poultry, 7(3), 36–37
  • Ogawa, M., Shimizu, K. & Nomoto, K. (2001). Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. International Journal of Food Microbiology, 68, 135–140.
  • Pan, W.H., Li, P.L. & Liu, Z. (2006). The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians faeces. Food Microbiology, 12, 148–152.
  • Perez-Sanchez, T., Balcazar, J.L., Garcia, Y., Halaihel, N., Vendrell, D., DeBlas, I., Merrifield, D.L. & Ruiz-Zarzuela, I. (2011a). Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. Journal of Fish Diseases, 34, 499–507.
  • Perez-Sanchez, T., Balcazar, J.L., Merrifield, D.L., Carnevali, O., Gioacchini, G., DeBlas, I., & Ruiz-Zarzuela, I. (2011b). Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish & Shellfish Immunology, 31(2), 196–201.
  • Rinkinen, M.L., Koort, J.M.K., Ouwehand, A.C., Westermarck, E. & Björkroth, K.J. (2004). Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiology Letters, 230, 35–39.
  • Sabir, F., Beyatli, Y., Cokmus, C. & Onal-Darilmaz, D. (2010). Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from kefir. Journal of Food Science, 75, 568–573.
  • Sahadeva, R.P.K., Leong, S.F., Chua, K.H., Tan, C.H., Chan, H.Y., Tong, E.V., Wong, S.Y.W. & Chan, H.K. (2011). Survival of commercial probiotic strains to pH and bile. International Food Research Journal, 18(4), 1515–1522.
  • Sandine, W.E. (1979). Roles of Lactobacillus in the intestinal tract. Journal of Food Protection, 42, 259–262.
  • Sharma, K.K., Soni, S.S. & Meharchandani, S. (2006). Congo red dye agar test as an indicator test for detection of invasive bovine Escherichia coli. Veterinarski Arhiv, 76, 363–366.
  • Shin, M.S., Han, S.K., Ji, A.R., Kim, K.S. & Lee, W.K. (2008). Isolation and characterization of bacteriocin‐producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. Journal of Applied Microbiology, 105(6), 2203–2212.
  • Sieladie, D.J., Zambou, N.F., Kaktcham, P.M., Cresci, A. & Fonteh, F. (2011). Probiotic properties of Lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon. Innovation Romanian Food and Biotechnology, 9, 12–28.
  • Strompfová, V., Lauková, A. & Ouwehand, A.C. (2004). Selection of enterococci for potential canine probiotic additives. Veterinary Microbiology, 100, 107–114.
  • Sul, S.Y., Hyun-Joong, K., Tae-Woon, K. & Hae-Yeong, K. (2007). Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using Multiplex PCR. Journal of Microbiology and Biotechnology, 17(3), 490–495.
  • Suzuki, K., Kodama, Y. & Mitsuoka, T. (1989). Stress and intestinal flora. Bifidobacteria Microflora, 8, 23–38.
  • Tannock, G.W. (1997). Probiotic properties of lactic acid bacteria: plenty of scope for fundamental. R&D Tibtechnology, 15, 270–274.
  • Turhan, E.Ü. & Erginkaya, Z. (2016). Determination of antibiotic resistance of lactic acid bacteria isolates of probiotic foods. Pamukkale Universitesi Mühendislik Bilimleri Dergisi, 22(7), 620–624.
  • Vanbelle, N., Teller, E. & Focant, M. (1990). Probiotics in animal nutrition: a review. Archives of Animal Nutrition, 40, 543–567.

Investigation of Probiotic Properties of Chicken Originated Enterococcus Faecium and Lactobacillus Species

Yıl 2020, Cilt: 5 Sayı: 3, 356 - 365, 30.09.2020
https://doi.org/10.35229/jaes.763996

Öz

Abstract: In this study, the isolation of Lactobacillus spp. and Enterococcus faecium and the investigation of the potential use of isolated bacteria as probiotic were aimed. In a study, 50 chicken intestines, which were taken from a commercial chicken slaughter house in Samsun region, were investigated. The samples were taken from intestinal mucosae and inoculated to the selective mediums for the isolation of Lactobacillus spp. and E. faecium. Suspected colonies were identified by PCR. The isolated bacteria were investigated for bile (0.5-1%) and pH (3-5) resistance by Bile and pH Tolerance tests, respectively. The hydrophobicity’s of the isolates were tested by using 0.03% Congo Red Agar. The antibiotic resistances of the isolates were determined by Kirby Bauer Disc Diffusion Test with using 9 antibiotic discs. The Radial Diffusion Method was used for determining the antagonistic effects of the isolates against Escherichia coli. Twenty E.faecium, 21 Lactobacillus spp. (9 of them were L. acidophilus) were isolated from samples. All the isolets were found as resistant to tested bile and pH conditions. All the isolates were hydrophobic, but none of them had an antagonistic effect against Escherichia coli. Eight of E.faecium isolates were found as resistant to 8 antibiotics. One Lactobacillus spp. (other than L. acidophilus) and 1 L. acidophilus isolate were resistant to 5 and 7 antibiotics, respectively. These isolates were evaluated as multi-antibiotic resistant strains. In conclusion, we detected that all the isolates were hydrophobic, resistant to bile and low pH conditions; but none of them had an antagonistic effect against Escherichia coli in tested conditions. These results indicated that the multi-antibiotic resistant strains of E.faecium, L.acidophilus and Lactobacillus spp. isolates had a potential of using as a probiotic and further in vivo efficiency studies had to be essential for these strains.

Proje Numarası

PYO.VET.1904.16.016

Kaynakça

  • Aarestrup, F.M., Agerso, Y., Gerner-Smidt, P., Madsen, M. & Jensen, L.B. (2000). Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagnostic Microbiology and Infectious Diseases, 37(2), 127–137.
  • Abdel-Daim, A., Hassouna, N., Hafez, M., Ashor, M.S. & Aboulwafa, M.M. (2013). Antagonistic activity of Lactobacillus isolates against Salmonella typhi in vitro. Biomedical Research International, 15, 680605–680617.
  • Balcazar, J.L., Vendrell, D., De Blas, I., Ruiz-Zarzuela, I., Mu´zquiz, J.L. & Girone´s, O. (2008). Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 278, 188–191.
  • CLSI. (2013). M02-A11 and M100-S23 Package - Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Eleventh Edition&Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement.
  • Dicks, L.M.T. (1993). Lactic acide bacteria: Understanding the microorganism. The keys to successfull use in maximising anti-coliform and anti-Salmonella activity. In: Biotechnology in the Feed Industy. Proceeding of Alltech’s Ninth Annual Sympossium, 151–168.
  • Di̇li̇k, Z. & İstanbulluoğlu, E. (2010). Studies on phenotyping and genotyping characterization of Enterococcus spp. isolated from entansive broiler farms and rural poultry establishments. Bornova Veteriner Kontrol ve Araştırma Enstitüsü Dergisi, 32(46), 37–46.
  • Fuller, R. (1989). A review. Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365–378.
  • Fuller, R. (2004). Reasons for the apparent variation in the probiotic response. Biologist, 51(4), 232.
  • Garriga, M., Pascual, M., Monfort, J.M. & Hugas, M. (1998). Selection of lactobacilli for chicken probiotic adjuncts. Journal of Applied Microbiology, 84(1), 125–132.
  • Grene, J.D. & Klaenhammer, T.R. (1994). Factors involved in adherence of lactobacilli to human Caco-2 cells. Applied and Environmental Microbiology, 60, 4487–4494.
  • Gülhan, T., Boynukara, B., Çiftci ,A., Söğüt, M.Ü. & Fındık, A. (2015). Characterization of Enterococcus faecalis isolates originating from different sources for their virulence factors and genes, antibiotic resistance patterns, genotypes and biofilm production. Iranian Journal of Veterinary Research, 16(3), 261–266.
  • Hassanzadazar, H., Ali, E., Karim, M. & Javad, H. (2012). Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese. Veterinary Research Forum, 3(3), 181–185.
  • Hjelm, M., Bergh, O., Riaza, A., Nielsen, J., Melcheiorsen, J., Jensen, S., Duncan, H., Ahrens, P., Birkbeck, H. & Gram, L. (2004). Selection and identification of autochthonous candidate probiotic bacteria from Turbot Larvae (Scophthalmus maximus) rearing units system. Applied Microbiology, 27, 360–371.
  • Jackson, C.R., Fedorka-Cray, P.J. & Barrett, J.B. (2004). Use of a genus- and species-specific multiplex PCR for identification of enterococci. Journal of Clinical Microbiology, 42(8), 3558–3565.
  • Jin, L.Z., Ho, Y.W., Abdullah, N. & Jalaludin, S. (1998). Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Letters in Applied Microbiology, 27, 183–185.
  • Karahan, A.G. & Çakmakçı, M.L. (1995). Civciv körbağırsağından izole edilen bazı laktobasil suşlarının çeşitli antibiyotiklere dirençleri. Tarım Bilimleri Dergisi, 1(1), 7–12.
  • Ke, D., Picard, F.O.J., Martineau, F., Me´nard, C., Roy, P.H., Ouellette, M. & Bergeron, M,G. (1999). Development of a PCR Assay for Rapid Detection of Enterococci. Journal of Clinical Microbiology, 37(11), 3497–3503.
  • Kim, C.J., Namkung, H., An, M.S. & Paik, I.K. (1988). Supplementation of probiotics to the broiler diets containing moldy corn. Korean Journal of Animal Science, 30, 542–548.
  • Kuleaşan, H. & Çakmakçı, M.L. (2002). Laktobasiller tarafından üretilen bakteriyosinlerin tanımlanması, sınıflandırılması ve bunların bazı gıda kaynaklı patojenler üzerindeki etkilerinin belirlenmesi. Ankara Üniversitesi Doktora Tezi, 79s, Ankara.
  • Kung, L. (1990). Microbes and enzymes. Feed International, 11(8), 10–16.
  • Lonkar, P., Harne, S.D., Kalorey, D.R. & Kurkure, N.V. (2005). Isolation, in vitro antibacterial activity, bacterial sensitivity and plasmid profile of Lactobacilli. Asian-Australasian Journal of Animal Science, 18(9), 1336–1342.
  • Markiewicz, L. & Biedrzycka E. (2005). Identification of Lactobacillus and Bifidobacterium species with PCR applied to quality control of fermented dairy beverages. Polish Journal of Food and Nutritional Science, 55(4), 359–365.
  • Marteau, P., Minekus, M., Havenoar, R. & Veld, J.H.J. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile. Journal of Dairy Science, 80, 1031–1037.
  • Mombelli, B. & Gismondo, M.R. (2000). The use of probiotics in medical practise. Antimicrobial Agents, 16, 531–536.
  • Mulder, R.A.W. (1991). Probiotics as a tool against Salmonella contamination. Misset-World Poultry, 7(3), 36–37
  • Ogawa, M., Shimizu, K. & Nomoto, K. (2001). Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. International Journal of Food Microbiology, 68, 135–140.
  • Pan, W.H., Li, P.L. & Liu, Z. (2006). The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians faeces. Food Microbiology, 12, 148–152.
  • Perez-Sanchez, T., Balcazar, J.L., Garcia, Y., Halaihel, N., Vendrell, D., DeBlas, I., Merrifield, D.L. & Ruiz-Zarzuela, I. (2011a). Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. Journal of Fish Diseases, 34, 499–507.
  • Perez-Sanchez, T., Balcazar, J.L., Merrifield, D.L., Carnevali, O., Gioacchini, G., DeBlas, I., & Ruiz-Zarzuela, I. (2011b). Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish & Shellfish Immunology, 31(2), 196–201.
  • Rinkinen, M.L., Koort, J.M.K., Ouwehand, A.C., Westermarck, E. & Björkroth, K.J. (2004). Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiology Letters, 230, 35–39.
  • Sabir, F., Beyatli, Y., Cokmus, C. & Onal-Darilmaz, D. (2010). Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from kefir. Journal of Food Science, 75, 568–573.
  • Sahadeva, R.P.K., Leong, S.F., Chua, K.H., Tan, C.H., Chan, H.Y., Tong, E.V., Wong, S.Y.W. & Chan, H.K. (2011). Survival of commercial probiotic strains to pH and bile. International Food Research Journal, 18(4), 1515–1522.
  • Sandine, W.E. (1979). Roles of Lactobacillus in the intestinal tract. Journal of Food Protection, 42, 259–262.
  • Sharma, K.K., Soni, S.S. & Meharchandani, S. (2006). Congo red dye agar test as an indicator test for detection of invasive bovine Escherichia coli. Veterinarski Arhiv, 76, 363–366.
  • Shin, M.S., Han, S.K., Ji, A.R., Kim, K.S. & Lee, W.K. (2008). Isolation and characterization of bacteriocin‐producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. Journal of Applied Microbiology, 105(6), 2203–2212.
  • Sieladie, D.J., Zambou, N.F., Kaktcham, P.M., Cresci, A. & Fonteh, F. (2011). Probiotic properties of Lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon. Innovation Romanian Food and Biotechnology, 9, 12–28.
  • Strompfová, V., Lauková, A. & Ouwehand, A.C. (2004). Selection of enterococci for potential canine probiotic additives. Veterinary Microbiology, 100, 107–114.
  • Sul, S.Y., Hyun-Joong, K., Tae-Woon, K. & Hae-Yeong, K. (2007). Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using Multiplex PCR. Journal of Microbiology and Biotechnology, 17(3), 490–495.
  • Suzuki, K., Kodama, Y. & Mitsuoka, T. (1989). Stress and intestinal flora. Bifidobacteria Microflora, 8, 23–38.
  • Tannock, G.W. (1997). Probiotic properties of lactic acid bacteria: plenty of scope for fundamental. R&D Tibtechnology, 15, 270–274.
  • Turhan, E.Ü. & Erginkaya, Z. (2016). Determination of antibiotic resistance of lactic acid bacteria isolates of probiotic foods. Pamukkale Universitesi Mühendislik Bilimleri Dergisi, 22(7), 620–624.
  • Vanbelle, N., Teller, E. & Focant, M. (1990). Probiotics in animal nutrition: a review. Archives of Animal Nutrition, 40, 543–567.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Yağmur Koçak Bu kişi benim 0000-0002-5784-4197

Alper Çiftci 0000-0001-8370-8677

Proje Numarası PYO.VET.1904.16.016
Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 4 Temmuz 2020
Kabul Tarihi 5 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 3

Kaynak Göster

APA Koçak, Y., & Çiftci, A. (2020). Tavuk Kökenli Enterococcus faecium ve Lactobacillus Türlerinin Probiyotik Özelliklerinin Araştırılması. Journal of Anatolian Environmental and Animal Sciences, 5(3), 356-365. https://doi.org/10.35229/jaes.763996


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg