Derleme
BibTex RIS Kaynak Göster

An Innovative Approach in The Field of Health: Nanoparticles/Nanomedicine

Yıl 2022, Cilt: 7 Sayı: 3, 304 - 313, 30.09.2022
https://doi.org/10.35229/jaes.1136335

Öz

Since diseases began to play a role in human history, people have sought ways to heal and prevent disease. This struggle started in hunter-gatherer communities that lived tens of thousands of years ago and has survived to the present day. Nanotechnology is one of the current stops of today's modern medicine, which includes fine techniques that people with the mission of healing diseases in ancient times cannot even imagine.
In this review, nanoparticles, which is product of nanotechnology, are classified according to various methods and the methods used during their preparation are mentioned. The underlying principles of nanoparticles being used as drug delivery, imaging and vaccine adjuvants, and toxicity of nanoparticles have been investigated. Some of the nanoparticle applications that are currently used in veterinary medicine and have the potential to be applied in the future are also mentioned.

Kaynakça

  • Adiseshaiah, P.P., Hall, J.B. & McNeil, S.E. (2010). Nanomaterial standards for efficacy and toxicity assessment. Nanomedicine and Nanobiotechnology, 2(1), 99–112.
  • Agrahari, V. & Agrahari, V. (2018). Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discovery Today, 23(5), 974–991.
  • Agrawal, S., Agrawal, A., Doughty, B., Gerwitz, A., Blenis, J., Van Dyke, T. & Pulendran, B. (2003). Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. Journal of Immunology, 171(10), 4984–4989.
  • Arulsudar, N., Subramanian, N., Mishra, P., Chuttani, K., Sharma, R. & Murthy, R. (2004). Preparation, characterization, and biodistribution study of technetium-99m-labeled leuprolide acetate-loaded liposomes in ehrlich ascites tumor-bearing mice. American Association of Pharmaceutical Scientists, 6(1), 45–56.
  • Bakker-Woudenberg, I.A., Schiffelers, R.M., Storm, G., Becker, MJ, & Guo, L. (2005). Long-circulating sterically stabilized liposomes in the treatment of infections. Methods in Enzymology, 391, 228–260.
  • Bansod, S.D., Bawaskar, M.S., Gade, A.K., & Rai, M.K. (2015). Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET Nanobiotechnology, 9(4), 165–171.
  • Bawa, R. (2008). Nanoparticle-based therapeutics in humans: a survey. Nanotechnology Law & Business, 5, 135.
  • Bentolila, L.A., Ebenstein, Y. & Weiss, S. (2009). Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine, 50(4), 493–496.
  • Boverhof, D.R., Bramante, C.M., Butala, J.H., Clancy, S.F., Lafranconi, M., West, J. & Gordon, S.C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73(1), 137–150.
  • Brayden, D.J. (2003). Controlled release technologies for drug delivery. Drug Discovery Today, 8(21), 976–978.
  • Brigger, I., Dubernet, C. & Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 54(5), 631–651.
  • British Standards Institute (BSI) (2011). Nanoparticles. Vocabulary. (PAS 71:2011). https://shop.bsigroup.com/en/Browse-By-Subject/Nanotechnology/Terminologies-for-nanotechnologies-/PAS-71. Last accession date: 06.06.2020.
  • Buzea, C., Pacheco, I.I. & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.
  • Cai, Z., Wang, Y., Zhu, L.J. & Liu, Z.Q. (2010). Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Current Drug Metabolisms, 11(2), 197–207.
  • Carmona, E.R., Plaza, T., Recio-Sanchez, G. & Parodi, J. (2018). Generation of a protocol for the synthesis of chitosan nanoparticles loaded with florfenicol through the ionic gelation method. Revista de Investigaciones Veterinarias del Perú (RIVEP), 29(4), 1195–1202.
  • Cordeiro, C., Wiseman, D.J., Lutwyche, P., Uh, M., Evans, J.C., Finlay, B.B. & Webb, M.S. (2000). Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar typhimurium intracellular infection model. Antimicrobial Agents and Chemotherapy, 44(3), 533–539.
  • Couvreur, P. & Puisieux, F. (1993). Nano-and microparticles for the delivery of polypeptides and proteins. Advanced Drug Delivery Reviews, 10(2-3), 141–162.
  • Couvreur, P. & Vauthier, C. (2006). Nanotechnology: Intelligent Design to Treat Complex Disease. Pharmaceutical Research, 23(7), 1417–1450.
  • Cubillos, C., de la Torre, B.G., Jakab, A., Clementi, G., Borrás, E., Bárcena, J., Andreu, D., Sobrino, F. & Blanco, E. (2008). Enhanced mucosal immunoglobulin A response and solid protection against foot-and-mouth disease virus challenge induced by a novel dendrimeric peptide. Journal of Virology, 82(14), 7223–7230.
  • El-Sayed, A. & Kamel, M. (2018). Advanced applications of nanotechnology in veterinary medicine. Environmental Science and Pollution Researches International, 27(16),19073–19086.
  • Fahmy, T.M., Samstein, R.M., Harness, C.C. & Saltzman, W.M. (2005). Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials, 26(28), 5727–5736.
  • Florindo, H.F., Pandit, S., Gonçalves, L.M., Videira, M., Alpar, O. & Almeida, A.J. (2009). Antibody and cytokine-associated immune responses to S. equi antigens entrapped in PLA nanospheres. Biomaterials, 30(28), 5161–5169.
  • Gershkovich, P., Wasan, K.M. & Barta, C.A. (2008). A review of the application of lipid-based systems in systemic, dermal/transdermal, and ocular drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 25(6), 545–584.
  • Guccione, S., Li, K.C. & Bednarski, M.D. (2004). Vascular-targeted nanoparticles for molecular imaging and therapy. Methods in Enzymology, 386, 219–236.
  • Hajizade, A., Ebrahimi, F., Salmanian, A.H., Arpanaei, A. & Amani, J. (2014). Nanoparticles in vaccine development. Journal of Applied Biotechnology Reports, 1(4), 125–134.
  • Harpin, S., Hurley, D.J., Mbikay, M., Talbot, B. & Elazhary, Y. (1999). Vaccination of cattle with a DNA plasmid encoding the bovine viral diarrhoea virus major glycoprotein E2. Journal of General Virology, 80, 3137–3144.
  • Hiszczyńska-Sawicka, E., Olędzka, G., Holec-Gąsior, L., Li, H., Xu, J.B., Sedcole, R., Kur, J., Bickerstaffe, R. & Stankiewicz, M. (2011). Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet Parasitol;177(3-4):281–289.
  • Hofheinz, R.D., Gnad-Vogt, S.U., Beyer, U. & Hochhaus, A. (2005). Liposomal encapsulated anti-cancer drugs. Anti-cancer Drugs, 16(7), 691–707.
  • Hu, S. & Hsieh, Y.L. (2015). Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydrate Polymers, 131, 134–141.
  • Ishihara, T., Takahashi, M., Higaki, M., Mizushima, Y. & Mizushima, T. (2010). Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. International Journal of Pharmaceutics, 385(1-2), 170–175.
  • Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A. & Danquah, M.K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.
  • Kakade, N. (2003). Nanotechnology: New challenges. Electronics for You, 35, 3–36.
  • Kumanan, V., Nugen, S.R., Baeumner, A.J. & Chang, Y.F. (2009). A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples. Journal of Veterinary Science, 10(1), 35–42.
  • Laverman, P., Brouwers, A.H., Dams, E.T.M., Oyen, W.J., Storm, G., van Rooijen, N., Corstens, F.H., & Boerman, O.C. (2000). Preclinical and clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose. Journal of Pharmacology and Experimental Therapeutics, 293(3), 996–1001.
  • Li, S., Nakaya, H.I., Kazmin, D.A., Oh, J.Z. & Pulendran, B. (2013). Systems biological approaches to measure and understand vaccine immunity in humans. Seminars in Immunology, 25, 209–218.
  • Liu, Y., Miyoshi, H. & Nakamura, M. (2007). Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, 120(12), 2527–2537.
  • Loftus, L. (2012). The non-compliant client. Veterinary Nursing Journal, 27(8), 294–297.
  • Lu, W., Sun, Q., Wan, J., She, Z. & Jiang, X.G. (2006). Cationic albumin–conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Research, 66(24), 11878–11887.
  • Lu, W., Wan, J., She, Z. & Jiang, X. (2007). Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. Journal of Controlled Release, 118(1), 38–53.
  • Luchini, A., Fredolini, C., Espina, B., Meani, F., Reeder, A., Rucker, S., Petricoin, I.E. & Liotta, L. (2010). Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery. Current Molecular Medicine, 10(2), 133–141.
  • Maeda, H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjugate Chemistry, 21(5), 797–802.
  • Matteucci, M.L. & Thrall, D.E. (2000). The role of liposomes in drug delivery and diagnostic imaging: a review. Veterinary Radiology & Ultrasound, 41(2), 100–107.
  • Maurer, P., Jennings, G.T., Willers, J., Rohner, F., Lindman, Y., Roubicek, K., Renner, W.A., Müller, P. & Bachmann, M.F. (2005). A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. European Journal of Immunology, 35(7), 2031–2040.
  • Metselaar, J.M., Wauben, M.H., Wagenaar‐Hilbers, J.P., Boerman, O.C. & Storm, G. (2003). Complete remission of experimental arthritis by joint targeting of glucocorticoids with long‐circulating liposomes. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 48(7), 2059–2066.
  • Mishra, B., Patel, B.B. & Tiwari, S. (2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine, 6(1), 9–24.
  • Moghimi, S.M., Hunter, A.C. & Murray, J.C. (2005). Nanomedicine: current status and future prospects. The FASEB Journal, 19(3), 311–330.
  • Morein, B., Hu, K.F. & Abusugra, I. (2004). Current status and potential application of ISCOMs in veterinary medicine. Advanced Drug Delivery Reviews, 56(10), 1367–1382.
  • Mueller, R.S., Veir, J., Fieseler, K.V. & Dow, S.W. (2005). Use of immunostimulatory liposome-nucleic acid complexes in allergen-specific immunotherapy of dogs with refractory atopic dermatitis – a pilot study. Veterinary Dermatology, 16(1), 61–68.
  • Nordly, P., Madsen, H.B., Nielsen, H.M. & Foged, C. (2009). Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opinion on Drug Delivery, 6(7), 657–672.
  • Pankhurst, Q.A., Connolly, J., Jones, S.K. & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics;36(13):R167–R181.
  • Pawar, K. & Kaul, G. (2014). Toxicity of titanium oxide nanoparticles causes functionality and DNA damage in buffalo (Bubalus bubalis) sperm in vitro. Toxicology and Industrial Health, 30(6), 520–533.
  • Plotkin, S.A., Orenstein, W. & Offit, P.A. (2013). Vaccines, 6th Edition - Expert Consult. Elsevier Health Sciences, 1–1508.
  • Rimmelzwaan, G.F., Claas, E.C.J., Van Amerongen, G., de Jong, J.C. & Osterhaus, A.D.M.E. (1999). ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine, 17(11), 1355–1358.
  • Roldão, A., Mellado, M.C.M., Castilho, L.R., Carrondo, M.J.T. & Alves, P.M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9(10), 1149–1176.
  • Rose, J.S., Neal, J.M. & Kopacz, D.J. (2005). Extended-duration analgesia: update on microspheres and liposomes. Regional Anesthesia and Pain Medicine, 30(3), 275.
  • Sahoo, S.K. & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8(24), 1112–1120.
  • Sainz, V., Conniot, J., Matos, A.I., Peres, C., Zupanǒiǒ, E., Moura, L., Silva, L.C., Florindo, H.F. & Gaspar, R.S. (2015). Regulatory aspects on nanomedicines. Biochemical and Biophysical Research Communications, 468(3), 504–510.
  • Scheerlinck, J.P., Gloster, S., Gamvrellis, A., Mottram, P.L. & Plebanski, M. (2006). Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine, 24(8), 1124–1131.
  • Schiffelers, R., Storm, G. & Bakker-Woudenberg, I. (2001). Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. Journal of Antimicrobial Chemotherapy, 48(3), 333–344.
  • Shek, P.N., Suntres, Z.E. & Brooks, J.I. (1994). Liposomes in pulmonary applications: physicochemical considerations, pulmonary distribution and antioxidant delivery. Journal of Drug Targeting, 2(5), 431–442.
  • Sirirat, N., Lu, J.J., Hung, A.T.Y., & Lien, T.F. (2013). Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention, and tissues minerals accumulation in layer chickens. Journal of Agricultural Science, 5(2), 150.
  • Szebeni, J., Alving, C.R., Rosivall, L., Bünger, R., Baranyi, L., Bedöcs, P., Tóth, M. & Barenholz, Y. (2007). Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. Journal of Liposome Research, 17(2), 107–117.
  • Tissot, A.C., Maurer, P., Nussberger, J., Sabat, R., Pfister, T., Ignatenko, S., Volk, H.D., Stocker, H., Müller, P., Jennings, G.T., Wagner, F. & Bachmann, M.F. (2008). Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. The Lancet, 371(9615), 821–827.
  • Treuel, L., Jiang, X. & Nienhaus, G.U. (2013). New views on cellular uptake and trafficking of manufactured nanoparticles. Journal of The Royal Society Interface, 10(82), 20120939.
  • Underwood, C. & van Eps, A.W. (2013). Nanomedicine and veterinary science: the reality and the practicality. Veterinary Journal, 193(1), 12–23.
  • Vandamme, K., Melkebeek, V., Cox, E., Remon, J.P. & Vervaet, C. (2011). Adjuvant effect of Gantrez(R)AN nanoparticles during oral vaccination of piglets against F4+enterotoxigenic Escherichia coli. Veterinary Immunology & Immunopathology, 139(2-4), 148–155.
  • Ventola, C.L. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics, 42(12), 742.
  • Verma, A.K., Singh, V. & Vikas, P. (2012). Application of nanotechnology as a tool in animal products processing and marketing: an overview. American Journal of Food Technology, 7(8), 445–451.
  • Vermeire, E., Hearnshaw, H., Van Royen, P. & Denekens, J. (2001). Patient adherence to treatment: three decades of research. A comprehensive review. Journal of Clinical Pharmacy and Therapeutics, 26(5), 331–342.
  • Wagner, V., Dullaart, A., Bock, A.K. & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217.
  • Wang, G., Pan, L., Zhang, Y., Wang, Y., Zhang, Z., Lü, J., Zhou, P., Fang, Y. & Jiang, S. (2011). Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS One, 6(11), e27605.
  • Winter, P.M., Caruthers, S.D., Allen, J.S., Cai, K., Williams, T.A., Lanza, G.M. & Wickline, S.A. (2010). Molecular imaging of angiogenic therapy in peripheral vascular disease with ανβ3‐integrin‐targeted nanoparticles. Magnetic Resonance in Medicine, 64(2), 369–376.
  • Yuan, P., Ma, Q., Meng, R., Wang, C., Dou, W., Wang, G. & Su, X. (2009). Multicolor quantum dot-encoded microspheres for the fluoroimmunoassays of chicken newcastle disease and goat pox virus. Journal of Nanoscience and Nanotechnology, 9(5), 3092–3098.
  • Yue, H. & Ma, G. (2015). Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine, 33(44), 5927–5936.
  • Zhang, S., Liu, Z., Zhou, N., Wang, Z. & Shen, J.A. (2008). Liposome immune lysis assay for enrofloxacin in carp and chicken muscle. Analytica Chimica Acta, 612(1), 83–88.
  • Zhang, W., Yin, Z., Liu, N., Yang, T., Wang, J., Bu, Z. & Wu, D. (2010). DNA-chitosan nanoparticles improve DNA vaccine-elicited immunity against Newcastle disease virus through shuttling chicken interleukin-2 gene. Journal of Microencapsulation, 27(8), 693–702.

Sağlık Alanında Yenilikçi Bir Yaklaşım: Nanopartiküller/Nanotıp

Yıl 2022, Cilt: 7 Sayı: 3, 304 - 313, 30.09.2022
https://doi.org/10.35229/jaes.1136335

Öz

Hastalıklar insanlık tarihinde rol oynamaya başladığından beri insanlar hastalıkları iyileştirmenin ve hastalıklardan korunmanın yollarını aramışlardır. Bu mücadele on binlerce yıl öncesinde yaşamış olan avcı-toplayıcı topluluklarda başlamış, günümüze kadar gelmiştir. Eski çağlarda hastalıkları iyileştirme misyonunu yüklenmiş insanların hayal dahi edemeyeceği ince teknikleri barındıran günümüz modern tıbbının gelmiş olduğu güncel duraklardan birisi de nanoteknolojidir.
Bu derlemede bir nanoteknoloji ürünü olan nanopartiküller çeşitli metotlara göre sınıflandırılmıştır ve hazırlanmaları sırasında kullanılan yöntemlerden bahsedilmektedir. Nanopartiküllerin ilaç iletimi, görüntüleme ve aşı adjuvanları olarak kullanılabilmelerinin altında yatan prensipler ile birlikte nanopartiküllerin toksisitesi konuları incelenmiştir. Nanopartiküllere yönelik veteriner hekimlikte günümüzde kullanılmakta olan ve gelecekte uygulanma potansiyeli bulunan uygulamalardan bazılarına da değinilmiştir.

Kaynakça

  • Adiseshaiah, P.P., Hall, J.B. & McNeil, S.E. (2010). Nanomaterial standards for efficacy and toxicity assessment. Nanomedicine and Nanobiotechnology, 2(1), 99–112.
  • Agrahari, V. & Agrahari, V. (2018). Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discovery Today, 23(5), 974–991.
  • Agrawal, S., Agrawal, A., Doughty, B., Gerwitz, A., Blenis, J., Van Dyke, T. & Pulendran, B. (2003). Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. Journal of Immunology, 171(10), 4984–4989.
  • Arulsudar, N., Subramanian, N., Mishra, P., Chuttani, K., Sharma, R. & Murthy, R. (2004). Preparation, characterization, and biodistribution study of technetium-99m-labeled leuprolide acetate-loaded liposomes in ehrlich ascites tumor-bearing mice. American Association of Pharmaceutical Scientists, 6(1), 45–56.
  • Bakker-Woudenberg, I.A., Schiffelers, R.M., Storm, G., Becker, MJ, & Guo, L. (2005). Long-circulating sterically stabilized liposomes in the treatment of infections. Methods in Enzymology, 391, 228–260.
  • Bansod, S.D., Bawaskar, M.S., Gade, A.K., & Rai, M.K. (2015). Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET Nanobiotechnology, 9(4), 165–171.
  • Bawa, R. (2008). Nanoparticle-based therapeutics in humans: a survey. Nanotechnology Law & Business, 5, 135.
  • Bentolila, L.A., Ebenstein, Y. & Weiss, S. (2009). Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine, 50(4), 493–496.
  • Boverhof, D.R., Bramante, C.M., Butala, J.H., Clancy, S.F., Lafranconi, M., West, J. & Gordon, S.C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73(1), 137–150.
  • Brayden, D.J. (2003). Controlled release technologies for drug delivery. Drug Discovery Today, 8(21), 976–978.
  • Brigger, I., Dubernet, C. & Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 54(5), 631–651.
  • British Standards Institute (BSI) (2011). Nanoparticles. Vocabulary. (PAS 71:2011). https://shop.bsigroup.com/en/Browse-By-Subject/Nanotechnology/Terminologies-for-nanotechnologies-/PAS-71. Last accession date: 06.06.2020.
  • Buzea, C., Pacheco, I.I. & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.
  • Cai, Z., Wang, Y., Zhu, L.J. & Liu, Z.Q. (2010). Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Current Drug Metabolisms, 11(2), 197–207.
  • Carmona, E.R., Plaza, T., Recio-Sanchez, G. & Parodi, J. (2018). Generation of a protocol for the synthesis of chitosan nanoparticles loaded with florfenicol through the ionic gelation method. Revista de Investigaciones Veterinarias del Perú (RIVEP), 29(4), 1195–1202.
  • Cordeiro, C., Wiseman, D.J., Lutwyche, P., Uh, M., Evans, J.C., Finlay, B.B. & Webb, M.S. (2000). Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar typhimurium intracellular infection model. Antimicrobial Agents and Chemotherapy, 44(3), 533–539.
  • Couvreur, P. & Puisieux, F. (1993). Nano-and microparticles for the delivery of polypeptides and proteins. Advanced Drug Delivery Reviews, 10(2-3), 141–162.
  • Couvreur, P. & Vauthier, C. (2006). Nanotechnology: Intelligent Design to Treat Complex Disease. Pharmaceutical Research, 23(7), 1417–1450.
  • Cubillos, C., de la Torre, B.G., Jakab, A., Clementi, G., Borrás, E., Bárcena, J., Andreu, D., Sobrino, F. & Blanco, E. (2008). Enhanced mucosal immunoglobulin A response and solid protection against foot-and-mouth disease virus challenge induced by a novel dendrimeric peptide. Journal of Virology, 82(14), 7223–7230.
  • El-Sayed, A. & Kamel, M. (2018). Advanced applications of nanotechnology in veterinary medicine. Environmental Science and Pollution Researches International, 27(16),19073–19086.
  • Fahmy, T.M., Samstein, R.M., Harness, C.C. & Saltzman, W.M. (2005). Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials, 26(28), 5727–5736.
  • Florindo, H.F., Pandit, S., Gonçalves, L.M., Videira, M., Alpar, O. & Almeida, A.J. (2009). Antibody and cytokine-associated immune responses to S. equi antigens entrapped in PLA nanospheres. Biomaterials, 30(28), 5161–5169.
  • Gershkovich, P., Wasan, K.M. & Barta, C.A. (2008). A review of the application of lipid-based systems in systemic, dermal/transdermal, and ocular drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 25(6), 545–584.
  • Guccione, S., Li, K.C. & Bednarski, M.D. (2004). Vascular-targeted nanoparticles for molecular imaging and therapy. Methods in Enzymology, 386, 219–236.
  • Hajizade, A., Ebrahimi, F., Salmanian, A.H., Arpanaei, A. & Amani, J. (2014). Nanoparticles in vaccine development. Journal of Applied Biotechnology Reports, 1(4), 125–134.
  • Harpin, S., Hurley, D.J., Mbikay, M., Talbot, B. & Elazhary, Y. (1999). Vaccination of cattle with a DNA plasmid encoding the bovine viral diarrhoea virus major glycoprotein E2. Journal of General Virology, 80, 3137–3144.
  • Hiszczyńska-Sawicka, E., Olędzka, G., Holec-Gąsior, L., Li, H., Xu, J.B., Sedcole, R., Kur, J., Bickerstaffe, R. & Stankiewicz, M. (2011). Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet Parasitol;177(3-4):281–289.
  • Hofheinz, R.D., Gnad-Vogt, S.U., Beyer, U. & Hochhaus, A. (2005). Liposomal encapsulated anti-cancer drugs. Anti-cancer Drugs, 16(7), 691–707.
  • Hu, S. & Hsieh, Y.L. (2015). Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydrate Polymers, 131, 134–141.
  • Ishihara, T., Takahashi, M., Higaki, M., Mizushima, Y. & Mizushima, T. (2010). Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. International Journal of Pharmaceutics, 385(1-2), 170–175.
  • Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A. & Danquah, M.K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.
  • Kakade, N. (2003). Nanotechnology: New challenges. Electronics for You, 35, 3–36.
  • Kumanan, V., Nugen, S.R., Baeumner, A.J. & Chang, Y.F. (2009). A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples. Journal of Veterinary Science, 10(1), 35–42.
  • Laverman, P., Brouwers, A.H., Dams, E.T.M., Oyen, W.J., Storm, G., van Rooijen, N., Corstens, F.H., & Boerman, O.C. (2000). Preclinical and clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose. Journal of Pharmacology and Experimental Therapeutics, 293(3), 996–1001.
  • Li, S., Nakaya, H.I., Kazmin, D.A., Oh, J.Z. & Pulendran, B. (2013). Systems biological approaches to measure and understand vaccine immunity in humans. Seminars in Immunology, 25, 209–218.
  • Liu, Y., Miyoshi, H. & Nakamura, M. (2007). Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, 120(12), 2527–2537.
  • Loftus, L. (2012). The non-compliant client. Veterinary Nursing Journal, 27(8), 294–297.
  • Lu, W., Sun, Q., Wan, J., She, Z. & Jiang, X.G. (2006). Cationic albumin–conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Research, 66(24), 11878–11887.
  • Lu, W., Wan, J., She, Z. & Jiang, X. (2007). Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. Journal of Controlled Release, 118(1), 38–53.
  • Luchini, A., Fredolini, C., Espina, B., Meani, F., Reeder, A., Rucker, S., Petricoin, I.E. & Liotta, L. (2010). Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery. Current Molecular Medicine, 10(2), 133–141.
  • Maeda, H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjugate Chemistry, 21(5), 797–802.
  • Matteucci, M.L. & Thrall, D.E. (2000). The role of liposomes in drug delivery and diagnostic imaging: a review. Veterinary Radiology & Ultrasound, 41(2), 100–107.
  • Maurer, P., Jennings, G.T., Willers, J., Rohner, F., Lindman, Y., Roubicek, K., Renner, W.A., Müller, P. & Bachmann, M.F. (2005). A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. European Journal of Immunology, 35(7), 2031–2040.
  • Metselaar, J.M., Wauben, M.H., Wagenaar‐Hilbers, J.P., Boerman, O.C. & Storm, G. (2003). Complete remission of experimental arthritis by joint targeting of glucocorticoids with long‐circulating liposomes. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 48(7), 2059–2066.
  • Mishra, B., Patel, B.B. & Tiwari, S. (2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine, 6(1), 9–24.
  • Moghimi, S.M., Hunter, A.C. & Murray, J.C. (2005). Nanomedicine: current status and future prospects. The FASEB Journal, 19(3), 311–330.
  • Morein, B., Hu, K.F. & Abusugra, I. (2004). Current status and potential application of ISCOMs in veterinary medicine. Advanced Drug Delivery Reviews, 56(10), 1367–1382.
  • Mueller, R.S., Veir, J., Fieseler, K.V. & Dow, S.W. (2005). Use of immunostimulatory liposome-nucleic acid complexes in allergen-specific immunotherapy of dogs with refractory atopic dermatitis – a pilot study. Veterinary Dermatology, 16(1), 61–68.
  • Nordly, P., Madsen, H.B., Nielsen, H.M. & Foged, C. (2009). Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opinion on Drug Delivery, 6(7), 657–672.
  • Pankhurst, Q.A., Connolly, J., Jones, S.K. & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics;36(13):R167–R181.
  • Pawar, K. & Kaul, G. (2014). Toxicity of titanium oxide nanoparticles causes functionality and DNA damage in buffalo (Bubalus bubalis) sperm in vitro. Toxicology and Industrial Health, 30(6), 520–533.
  • Plotkin, S.A., Orenstein, W. & Offit, P.A. (2013). Vaccines, 6th Edition - Expert Consult. Elsevier Health Sciences, 1–1508.
  • Rimmelzwaan, G.F., Claas, E.C.J., Van Amerongen, G., de Jong, J.C. & Osterhaus, A.D.M.E. (1999). ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine, 17(11), 1355–1358.
  • Roldão, A., Mellado, M.C.M., Castilho, L.R., Carrondo, M.J.T. & Alves, P.M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9(10), 1149–1176.
  • Rose, J.S., Neal, J.M. & Kopacz, D.J. (2005). Extended-duration analgesia: update on microspheres and liposomes. Regional Anesthesia and Pain Medicine, 30(3), 275.
  • Sahoo, S.K. & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8(24), 1112–1120.
  • Sainz, V., Conniot, J., Matos, A.I., Peres, C., Zupanǒiǒ, E., Moura, L., Silva, L.C., Florindo, H.F. & Gaspar, R.S. (2015). Regulatory aspects on nanomedicines. Biochemical and Biophysical Research Communications, 468(3), 504–510.
  • Scheerlinck, J.P., Gloster, S., Gamvrellis, A., Mottram, P.L. & Plebanski, M. (2006). Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine, 24(8), 1124–1131.
  • Schiffelers, R., Storm, G. & Bakker-Woudenberg, I. (2001). Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. Journal of Antimicrobial Chemotherapy, 48(3), 333–344.
  • Shek, P.N., Suntres, Z.E. & Brooks, J.I. (1994). Liposomes in pulmonary applications: physicochemical considerations, pulmonary distribution and antioxidant delivery. Journal of Drug Targeting, 2(5), 431–442.
  • Sirirat, N., Lu, J.J., Hung, A.T.Y., & Lien, T.F. (2013). Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention, and tissues minerals accumulation in layer chickens. Journal of Agricultural Science, 5(2), 150.
  • Szebeni, J., Alving, C.R., Rosivall, L., Bünger, R., Baranyi, L., Bedöcs, P., Tóth, M. & Barenholz, Y. (2007). Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. Journal of Liposome Research, 17(2), 107–117.
  • Tissot, A.C., Maurer, P., Nussberger, J., Sabat, R., Pfister, T., Ignatenko, S., Volk, H.D., Stocker, H., Müller, P., Jennings, G.T., Wagner, F. & Bachmann, M.F. (2008). Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. The Lancet, 371(9615), 821–827.
  • Treuel, L., Jiang, X. & Nienhaus, G.U. (2013). New views on cellular uptake and trafficking of manufactured nanoparticles. Journal of The Royal Society Interface, 10(82), 20120939.
  • Underwood, C. & van Eps, A.W. (2013). Nanomedicine and veterinary science: the reality and the practicality. Veterinary Journal, 193(1), 12–23.
  • Vandamme, K., Melkebeek, V., Cox, E., Remon, J.P. & Vervaet, C. (2011). Adjuvant effect of Gantrez(R)AN nanoparticles during oral vaccination of piglets against F4+enterotoxigenic Escherichia coli. Veterinary Immunology & Immunopathology, 139(2-4), 148–155.
  • Ventola, C.L. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics, 42(12), 742.
  • Verma, A.K., Singh, V. & Vikas, P. (2012). Application of nanotechnology as a tool in animal products processing and marketing: an overview. American Journal of Food Technology, 7(8), 445–451.
  • Vermeire, E., Hearnshaw, H., Van Royen, P. & Denekens, J. (2001). Patient adherence to treatment: three decades of research. A comprehensive review. Journal of Clinical Pharmacy and Therapeutics, 26(5), 331–342.
  • Wagner, V., Dullaart, A., Bock, A.K. & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217.
  • Wang, G., Pan, L., Zhang, Y., Wang, Y., Zhang, Z., Lü, J., Zhou, P., Fang, Y. & Jiang, S. (2011). Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS One, 6(11), e27605.
  • Winter, P.M., Caruthers, S.D., Allen, J.S., Cai, K., Williams, T.A., Lanza, G.M. & Wickline, S.A. (2010). Molecular imaging of angiogenic therapy in peripheral vascular disease with ανβ3‐integrin‐targeted nanoparticles. Magnetic Resonance in Medicine, 64(2), 369–376.
  • Yuan, P., Ma, Q., Meng, R., Wang, C., Dou, W., Wang, G. & Su, X. (2009). Multicolor quantum dot-encoded microspheres for the fluoroimmunoassays of chicken newcastle disease and goat pox virus. Journal of Nanoscience and Nanotechnology, 9(5), 3092–3098.
  • Yue, H. & Ma, G. (2015). Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine, 33(44), 5927–5936.
  • Zhang, S., Liu, Z., Zhou, N., Wang, Z. & Shen, J.A. (2008). Liposome immune lysis assay for enrofloxacin in carp and chicken muscle. Analytica Chimica Acta, 612(1), 83–88.
  • Zhang, W., Yin, Z., Liu, N., Yang, T., Wang, J., Bu, Z. & Wu, D. (2010). DNA-chitosan nanoparticles improve DNA vaccine-elicited immunity against Newcastle disease virus through shuttling chicken interleukin-2 gene. Journal of Microencapsulation, 27(8), 693–702.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Volkan Enes Ergüden 0000-0003-2215-2868

Alper Çiftci 0000-0001-8370-8677

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 27 Haziran 2022
Kabul Tarihi 31 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 3

Kaynak Göster

APA Ergüden, V. E., & Çiftci, A. (2022). An Innovative Approach in The Field of Health: Nanoparticles/Nanomedicine. Journal of Anatolian Environmental and Animal Sciences, 7(3), 304-313. https://doi.org/10.35229/jaes.1136335


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS