Bacillus amyloliquefaciens N33’ün Biyokontrolde Kullanım Potansiyelinin Ortaya Çıkarılması
Yıl 2025,
Cilt: 10 Sayı: 4, 360 - 365, 31.07.2025
Sevda Uçar
,
Şeyma Alım
,
Neslihan Dikbaş
,
Kağan Kökten
Öz
Bitki hastalıklarının kontrolünde ve hasat sonrası meyve, sebze ve tahılların muhafazasında sentetik kimyasallar yerine biyokontrol ajanlarının kullanımı, sayısız avantajları göz önüne alındığında büyük bir ivme kazanmıştır. Mevcut çalışmada maruldan izole edilen Bacillus amiyloliquefaciens N33 suşunun Penicillium citrinum, P. expansum, P. verrucosum, P. digitatum, P. paneum, Fusarium graminearum ve Aspergillus fumigatus’a karşı antifungal etkinliği in vitro olarak test edilmiştir. Suş test edilen tüm funguslara karşı yüksek bir etkinlik göstermiş ve inhibisyon oranı %60,3-94,2 aralığında değişmiştir. En yüksek etkinlik meyvelerde hasat sonrası önemli kayıplara neden olan P. digitatum (%94,2) ve P. expansum’a (%82,5) karşı görülmüştür. Ayrıca N33 F. graminearum, P. digitatum, P. expansum ve P. paneum’a karşı sentetik fungusitten daha yüksek bir etkinlik göstermiştir. Elde edilen bulgular B. amiyloliquefaciens N33’ün farklı fungus türlerine karşı geniş spektrumlu bir biyolojik mücadele etmeni olabileceğini göstermektedir.
Kaynakça
-
Abbas, A., & Yli-Mattila, T. (2022). Biocontrol of Fusarium
graminearum, a causal agent of Fusarium head blight
of wheat, and deoxynivalenol accumulation: From in
vitro to in planta. Toxins, 14(5), 299. DOI:
10.3390/toxins14050299
-
Albayrak, Ç.B. (2019). Bacillus Species as Biocontrol Agents
for Fungal Plant Pathogens. In: Islam, M., Rahman, M.,
Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and
Agrobiotechnology: Phytostimulation and Biocontrol.
Bacilli in Climate Resilient Agriculture and
Bioprospecting. Springer, Cham. DOI: 10.1007/978-3-
030-15175-1_13
-
Avan, M., Albastawisi, E.M., Levent, Y.D., İşlek, S., & Kotan,
R. (2024). Evaluation of Bacillus amyloliquefaciens
TV‐17C as a potential biocontrol agent for controlling
postharvest Penicillium digitatum on orange. Journal of
Phytopathology, 172(3), e13345. DOI:
10.1111/jph.13345
-
Baard, V., Bakare, O.O., Daniel, A.I., Nkomo, M., Gokul, A.,
Keyster, M., & Klein, A. (2023). Biocontrol potential
of Bacillus subtilis and Bacillus tequilensis against four
Fusarium species. Pathogens, 12(2), 254. DOI:
10.3390/pathogens12020254
-
Calvo, H., Marco, P., Blanco, D., Oria, R., & Venturini, M.E.
(2017). Potential of a new strain of Bacillus
amyloliquefaciens BUZ-14 as a biocontrol agent of
postharvest fruit diseases. Food microbiology, 63, 101-
110. DOI: 10.1016/j.fm.2016.11.004
-
Chen, K., Tian, Z., Luo, Y., Cheng, Y., & Long, C.A. (2018).
Antagonistic activity and the mechanism of Bacillus
amyloliquefaciens DH-4 against citrus green mold.
Phytopathology, 108(11), 1253-1262. DOI:
10.1094/PHYTO-01-17-0032-R
-
Cruz-Martín, M., Mena, E., Acosta-Suárez, M., Pichardo, T.,
Rodriguez, E., & Alvarado-Capó, Y. (2020). Protein
compounds of Bacillus subtilis with in vitro antifungal
activity against Pseudocercospora fijiensis (Morelet).
Brazilian Journal of Microbiology, 51, 265-269. DOI:
10.1007/s42770-019-00136-9
-
Dadrasnia, A., Usman, M.M., Omar, R., Ismail, S., &
Abdullah, R. (2020). Potential use of Bacillus genus to
control of bananas diseases: Approaches toward high
yield production and sustainable management. Journal
of King Saud University-Science, 32(4), 2336-2342.
DOI: 10.1016/j.jksus.2020.03.011
-
Deguine, J.P., Aubertot, J.N., Flor, R.J., Lescourret, F.,
Wyckhuys, K.A., & Ratnadass, A. (2021). Integrated
pest management: good intentions, hard realities. A
review. Agronomy for Sustainable Development, 41(3),
38. DOI: 10.1007/s13593-021-00689-w
-
Dikbaş, N., Uçar, S., Tozlu, E., Kotan, M.Ş., & Kotan, R.
(2023). Antifungal activity of partially purified
bacterial chitinase against Alternaria alternata.
Erwerbs-obstbau, 65(4), 761-766. DOI:
10.1007/s10341-022-00716-4
-
Dobrzyński, J., Jakubowska, Z., Kulkova, I., Kowalczyk, P.,
& Kramkowski, K. (2023). Biocontrol of fungal
phytopathogens by Bacillus pumilus. Frontiers in
Microbiology, 14, 1194606. DOI:
10.3389/fmicb.2023.1194606
-
Dukare, A.S., Singh, R.K., Jangra, R.K., & Bhushan, B.
(2022). Non-fungicides-based promising technologies
for managing post-production penicillium induced
spoilage in horticultural commodities: a comprehensive
review. Food Reviews International, 38(3), 227-267.
DOI: 10.1080/87559129.2020.1727497
-
Huang, L.R., Ling, X.N., Peng, S.Y., Tan, M.H., Yan, L. Q.,
Liang, Y.Y., Li, G.H., & Li, K.T. (2023). A marine
lipopeptides-producing Bacillus amyloliquefaciens
HY2-1 with a broad-spectrum antifungal and
antibacterial activity and its fermentation kinetics
study. World Journal of Microbiology and
Biotechnology, 39(8), 196. DOI: 10.1007/s11274-023-
03643-y
-
Jabnoun-Khiareddine, H., Aydi-Ben-Abdallah, R., & Daami-
Remadi, M. (2023). Multi-species endophytic Bacillus
for improved control of potato soilborne and tuber-
borne diseases in Tunisia: from laboratory to field
conditions. Egyptian Journal of Biological Pest
Control, 33(1), 109. DOI: 10.1186/s41938-023-00753-
5
-
Krishnan, S.V., Nampoothiri, K.M., Suresh, A., Linh, N.T.,
Balakumaran, P.A., Pócsi, I., & Pusztahelyi, T.
(2024). Fusarium biocontrol: antagonism and
mycotoxin elimination by lactic acid bacteria. Frontiers
in Microbiology, 14, 1260166. DOI:
10.3389/fmicb.2023.1260166
-
Li, X., Zhang, Y., Wei, Z., Guan, Z., Cai, Y., & Liao, X. (2016).
Antifungal activity of isolated Bacillus
amyloliquefaciens SYBC H47 for the biocontrol of
peach gummosis. PloS one, 11(9), e0162125. DOI:
10.1371/journal.pone.0162125
-
Liu, X., Cao, A., Yan, D., Ouyang, C., Wang, Q., & Li, Y.
(2021). Overview of mechanisms and uses of
biopesticides. International Journal of Pest
Management, 67(1), 65-72. DOI:
10.1080/09670874.2019.1664789
-
Mosa, M.A., Youssef, K., Hamed, S.F., & Hashim, A.F.
(2023). Antifungal activity of eco-safe nanoemulsions
based on Nigella sativa oil against Penicillium
verrucosum infecting maize seeds: Biochemical and
physiological traits. Frontiers in microbiology, 13,
1108733. DOI: 10.3389/fmicb.2022.1108733
-
Saleh, A.E., Ul-Hassan, Z., Zeidan, R., Al-Shamary, N., Al-
Yafei, T., Alnaimi, H., Salah Higazy, N., Migheli, Q.,
& Jaoua, S. (2021). Biocontrol activity of Bacillus
megaterium BM344-1 against toxigenic fungi. ACS
omega, 6(16), 10984-10990. DOI:
10.1021/acsomega.1c00816
-
Settier-Ramírez, L., López-Carballo, G., Hernández-Muñoz,
P., Fontana, A., Strub, C., & Schorr-Galindo, S.
(2021). New isolated Metschnikowia pulcherrima
strains from apples for postharvest biocontrol of
Penicillium expansum and patulin accumulation.
Toxins, 13(6), 397. DOI: 10.3390/toxins13060397
-
Singh, A., Balhara, M.E.E.N.A.K.S.H.I., Singh, B.H.A.
R.A.T., & Chhillar, A.K. (2015). In vitro evaluation of
antifungal potential and electron microscopic studies of
Bacillus amyloliquefaciens against Aspergillus species.
International Journal of Pharmacy and
Pharmaceutical Sciences, 7, 316-320.
-
Soliman, S.A., Abdelhameed, R.E., & Metwally, R.A. (2023).
In vivo and In vitro evaluation of the antifungal activity
of the PGPR Bacillus amyloliquefaciens RaSh1
(MZ945930) against Alternaria alternata with growth
promotion influences on Capsicum annuum L. plants.
Microbial Cell Factories, 22(1), 70. DOI:
10.1186/s12934-023-02080-8
-
Soliman, S.A., Khaleil, M.M., & Metwally, R.A. (2022).
Evaluation of the antifungal activity of Bacillus
amyloliquefaciens and B. velezensis and
characterization of the bioactive secondary metabolites
produced against plant pathogenic fungi. Biology,
11(10), 1390. DOI: 10.3390/biology11101390
-
Tang, K.H.D. (2025). Effects of Microplastics on
Bioavailability, Persistence and Toxicity of Plant
Pesticides: An Agricultural Perspective. Agriculture,
15(4), 356. DOI: 10.3390/agriculture15040356
-
Trung, N.T., Thao, N.T., Le Thanh, N.S., Dai Nguyen, N.P.,
Tuyet, N.T.A., Cuong, N.T., Chan, S.S., Khoo, K.S.,
& Show, P.L. (2023). Antifungal activity of secondary
metabolites purified from Bacillus subtilis isolated in
Vietnam and evaluated on in vitro and in vivo models.
International Biodeterioration & Biodegradation, 179,
105558. DOI: 10.1016/j.ibiod.2022.105558
-
Ul Hassan, Z., Al Thani, R., Alnaimi, H., Migheli, Q., &
Jaoua, S. (2019). Investigation and application of
Bacillus licheniformis volatile compounds for the
biological control of toxigenic Aspergillus and
Penicillium spp. ACS omega, 4(17), 17186-17193.
DOI: 10.1021/acsomega.9b01638
-
Wang, Z., Sui, Y., Li, J., Tian, X., & Wang, Q. (2022).
Biological control of postharvest fungal decays in
citrus: a review. Critical Reviews in Food Science and
Nutrition, 62(4), 861-870. DOI:
10.1080/10408398.2020.1829542
-
Wei, L., Yang, C., Cui, L., Jin, M., & Osei, R. (2023). Bacillus
spp. isolated from pepper leaves and their function and
inhibition of the fungal plant pathogen Colletotrichum
scovillei. Egyptian Journal of Biological Pest Control,
33(1), 46. DOI: 10.1186/s41938-023-00686-z
-
Xie, S., Jiang, L., Wu, Q., Wan, W., Gan, Y., Zhao, L., & Wen,
J. (2022). Maize root exudates recruit Bacillus
amyloliquefaciens OR2-30 to inhibit Fusarium
graminearum infection. Phytopathology®, 112(9),
1886-1893. DOI: 10.1094/PHYTO-01-22-0028-R
-
Xu, S., Wang, Y., Hu, J., Chen, X., Qiu, Y., Shi, J., Wang G.,
& Xu, J. (2021). Isolation and characterization of
Bacillus amyloliquefaciens MQ01, a bifunctional
biocontrol bacterium with antagonistic activity against
Fusarium graminearum and biodegradation capacity of
zearalenone. Food Control, 130, 108259. DOI:
10.1016/j.foodcont.2021.108259
-
Xu, X., Cheng, Y., Fang, Z., Yin, J., Shen, H., & Ma, D. (2022).
Identification and utilization of a new Bacillus
amyloliquefaciens XY-1 against Fusarium head blight.
Frontiers in Plant Science, 13, 1055213. DOI:
10.3389/fpls.2022.1055213
-
Yi, Y., Luan, P., Fan, M., Wu, X., Sun, Z., Shang, Z., Yang,
Y., & Li, C. (2024). Antifungal efficacy of Bacillus
amyloliquefaciens ZK-9 against Fusarium
graminearum and analysis of the potential mechanism
of its lipopeptides. International Journal of Food
Microbiology, 422, 110821. DOI:
10.1016/j.ijfoodmicro.2024.110821
-
Zeidan, R., Hassan, Z. U., Ashfaq, M. Y., Al-Thani, R., &
Jaoua, S. (2024). Investigation of heat-resistant
antifungal agents from Bacillus amyloliquefaciens and
Bacillus subtilis for biocontrol of mycotoxigenic fungi.
Environmental Technology & Innovation, 36, 103748.
DOI: 10.1016/j.eti.2024.103748
-
Zhao, W., Hong, S.Y., Kim, J.Y., & Om, A.S. (2024). Effects
of temperature, pH, and relative humidity on the growth
of Penicillium paneum OM1 isolated from pears and its
patulin production. Fungal Biology, 128(4), 1885-1897.
DOI: 10.1016/j.funbio.2024.05.005
Exploring the Potential of Bacillus amyloliquefaciens N33 in Biocontrol
Yıl 2025,
Cilt: 10 Sayı: 4, 360 - 365, 31.07.2025
Sevda Uçar
,
Şeyma Alım
,
Neslihan Dikbaş
,
Kağan Kökten
Öz
The use of biocontrol agents instead of synthetic chemicals in the control of plant diseases and post-harvest preservation of fruits, vegetables and cereals has gained great momentum given their numerous advantages. In the present study, the antifungal activity of Bacillus amiyloliquefaciens N33 strain isolated from lettuce was tested in vitro against Penicillium citrinum, P. expansum, P. verrucosum, P. digitatum, P. paneum, Fusarium graminearum and Aspergillus fumigatus. The strain showed a high activity against all tested fungi and the inhibition rate ranged between 60.3-94.2%. The highest activity was observed against P. digitatum (94.2%) and P. expansum (82.5%), which caused significant postharvest losses in fruits. In addition, N33 showed a higher activity against F. graminearum, P. digitatum, P. expansum and P. paneum than the synthetic fungicide. The findings indicate that B. amiyloliquefaciens N33 can be a broad spectrum biological control agent against different fungal species.
Kaynakça
-
Abbas, A., & Yli-Mattila, T. (2022). Biocontrol of Fusarium
graminearum, a causal agent of Fusarium head blight
of wheat, and deoxynivalenol accumulation: From in
vitro to in planta. Toxins, 14(5), 299. DOI:
10.3390/toxins14050299
-
Albayrak, Ç.B. (2019). Bacillus Species as Biocontrol Agents
for Fungal Plant Pathogens. In: Islam, M., Rahman, M.,
Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and
Agrobiotechnology: Phytostimulation and Biocontrol.
Bacilli in Climate Resilient Agriculture and
Bioprospecting. Springer, Cham. DOI: 10.1007/978-3-
030-15175-1_13
-
Avan, M., Albastawisi, E.M., Levent, Y.D., İşlek, S., & Kotan,
R. (2024). Evaluation of Bacillus amyloliquefaciens
TV‐17C as a potential biocontrol agent for controlling
postharvest Penicillium digitatum on orange. Journal of
Phytopathology, 172(3), e13345. DOI:
10.1111/jph.13345
-
Baard, V., Bakare, O.O., Daniel, A.I., Nkomo, M., Gokul, A.,
Keyster, M., & Klein, A. (2023). Biocontrol potential
of Bacillus subtilis and Bacillus tequilensis against four
Fusarium species. Pathogens, 12(2), 254. DOI:
10.3390/pathogens12020254
-
Calvo, H., Marco, P., Blanco, D., Oria, R., & Venturini, M.E.
(2017). Potential of a new strain of Bacillus
amyloliquefaciens BUZ-14 as a biocontrol agent of
postharvest fruit diseases. Food microbiology, 63, 101-
110. DOI: 10.1016/j.fm.2016.11.004
-
Chen, K., Tian, Z., Luo, Y., Cheng, Y., & Long, C.A. (2018).
Antagonistic activity and the mechanism of Bacillus
amyloliquefaciens DH-4 against citrus green mold.
Phytopathology, 108(11), 1253-1262. DOI:
10.1094/PHYTO-01-17-0032-R
-
Cruz-Martín, M., Mena, E., Acosta-Suárez, M., Pichardo, T.,
Rodriguez, E., & Alvarado-Capó, Y. (2020). Protein
compounds of Bacillus subtilis with in vitro antifungal
activity against Pseudocercospora fijiensis (Morelet).
Brazilian Journal of Microbiology, 51, 265-269. DOI:
10.1007/s42770-019-00136-9
-
Dadrasnia, A., Usman, M.M., Omar, R., Ismail, S., &
Abdullah, R. (2020). Potential use of Bacillus genus to
control of bananas diseases: Approaches toward high
yield production and sustainable management. Journal
of King Saud University-Science, 32(4), 2336-2342.
DOI: 10.1016/j.jksus.2020.03.011
-
Deguine, J.P., Aubertot, J.N., Flor, R.J., Lescourret, F.,
Wyckhuys, K.A., & Ratnadass, A. (2021). Integrated
pest management: good intentions, hard realities. A
review. Agronomy for Sustainable Development, 41(3),
38. DOI: 10.1007/s13593-021-00689-w
-
Dikbaş, N., Uçar, S., Tozlu, E., Kotan, M.Ş., & Kotan, R.
(2023). Antifungal activity of partially purified
bacterial chitinase against Alternaria alternata.
Erwerbs-obstbau, 65(4), 761-766. DOI:
10.1007/s10341-022-00716-4
-
Dobrzyński, J., Jakubowska, Z., Kulkova, I., Kowalczyk, P.,
& Kramkowski, K. (2023). Biocontrol of fungal
phytopathogens by Bacillus pumilus. Frontiers in
Microbiology, 14, 1194606. DOI:
10.3389/fmicb.2023.1194606
-
Dukare, A.S., Singh, R.K., Jangra, R.K., & Bhushan, B.
(2022). Non-fungicides-based promising technologies
for managing post-production penicillium induced
spoilage in horticultural commodities: a comprehensive
review. Food Reviews International, 38(3), 227-267.
DOI: 10.1080/87559129.2020.1727497
-
Huang, L.R., Ling, X.N., Peng, S.Y., Tan, M.H., Yan, L. Q.,
Liang, Y.Y., Li, G.H., & Li, K.T. (2023). A marine
lipopeptides-producing Bacillus amyloliquefaciens
HY2-1 with a broad-spectrum antifungal and
antibacterial activity and its fermentation kinetics
study. World Journal of Microbiology and
Biotechnology, 39(8), 196. DOI: 10.1007/s11274-023-
03643-y
-
Jabnoun-Khiareddine, H., Aydi-Ben-Abdallah, R., & Daami-
Remadi, M. (2023). Multi-species endophytic Bacillus
for improved control of potato soilborne and tuber-
borne diseases in Tunisia: from laboratory to field
conditions. Egyptian Journal of Biological Pest
Control, 33(1), 109. DOI: 10.1186/s41938-023-00753-
5
-
Krishnan, S.V., Nampoothiri, K.M., Suresh, A., Linh, N.T.,
Balakumaran, P.A., Pócsi, I., & Pusztahelyi, T.
(2024). Fusarium biocontrol: antagonism and
mycotoxin elimination by lactic acid bacteria. Frontiers
in Microbiology, 14, 1260166. DOI:
10.3389/fmicb.2023.1260166
-
Li, X., Zhang, Y., Wei, Z., Guan, Z., Cai, Y., & Liao, X. (2016).
Antifungal activity of isolated Bacillus
amyloliquefaciens SYBC H47 for the biocontrol of
peach gummosis. PloS one, 11(9), e0162125. DOI:
10.1371/journal.pone.0162125
-
Liu, X., Cao, A., Yan, D., Ouyang, C., Wang, Q., & Li, Y.
(2021). Overview of mechanisms and uses of
biopesticides. International Journal of Pest
Management, 67(1), 65-72. DOI:
10.1080/09670874.2019.1664789
-
Mosa, M.A., Youssef, K., Hamed, S.F., & Hashim, A.F.
(2023). Antifungal activity of eco-safe nanoemulsions
based on Nigella sativa oil against Penicillium
verrucosum infecting maize seeds: Biochemical and
physiological traits. Frontiers in microbiology, 13,
1108733. DOI: 10.3389/fmicb.2022.1108733
-
Saleh, A.E., Ul-Hassan, Z., Zeidan, R., Al-Shamary, N., Al-
Yafei, T., Alnaimi, H., Salah Higazy, N., Migheli, Q.,
& Jaoua, S. (2021). Biocontrol activity of Bacillus
megaterium BM344-1 against toxigenic fungi. ACS
omega, 6(16), 10984-10990. DOI:
10.1021/acsomega.1c00816
-
Settier-Ramírez, L., López-Carballo, G., Hernández-Muñoz,
P., Fontana, A., Strub, C., & Schorr-Galindo, S.
(2021). New isolated Metschnikowia pulcherrima
strains from apples for postharvest biocontrol of
Penicillium expansum and patulin accumulation.
Toxins, 13(6), 397. DOI: 10.3390/toxins13060397
-
Singh, A., Balhara, M.E.E.N.A.K.S.H.I., Singh, B.H.A.
R.A.T., & Chhillar, A.K. (2015). In vitro evaluation of
antifungal potential and electron microscopic studies of
Bacillus amyloliquefaciens against Aspergillus species.
International Journal of Pharmacy and
Pharmaceutical Sciences, 7, 316-320.
-
Soliman, S.A., Abdelhameed, R.E., & Metwally, R.A. (2023).
In vivo and In vitro evaluation of the antifungal activity
of the PGPR Bacillus amyloliquefaciens RaSh1
(MZ945930) against Alternaria alternata with growth
promotion influences on Capsicum annuum L. plants.
Microbial Cell Factories, 22(1), 70. DOI:
10.1186/s12934-023-02080-8
-
Soliman, S.A., Khaleil, M.M., & Metwally, R.A. (2022).
Evaluation of the antifungal activity of Bacillus
amyloliquefaciens and B. velezensis and
characterization of the bioactive secondary metabolites
produced against plant pathogenic fungi. Biology,
11(10), 1390. DOI: 10.3390/biology11101390
-
Tang, K.H.D. (2025). Effects of Microplastics on
Bioavailability, Persistence and Toxicity of Plant
Pesticides: An Agricultural Perspective. Agriculture,
15(4), 356. DOI: 10.3390/agriculture15040356
-
Trung, N.T., Thao, N.T., Le Thanh, N.S., Dai Nguyen, N.P.,
Tuyet, N.T.A., Cuong, N.T., Chan, S.S., Khoo, K.S.,
& Show, P.L. (2023). Antifungal activity of secondary
metabolites purified from Bacillus subtilis isolated in
Vietnam and evaluated on in vitro and in vivo models.
International Biodeterioration & Biodegradation, 179,
105558. DOI: 10.1016/j.ibiod.2022.105558
-
Ul Hassan, Z., Al Thani, R., Alnaimi, H., Migheli, Q., &
Jaoua, S. (2019). Investigation and application of
Bacillus licheniformis volatile compounds for the
biological control of toxigenic Aspergillus and
Penicillium spp. ACS omega, 4(17), 17186-17193.
DOI: 10.1021/acsomega.9b01638
-
Wang, Z., Sui, Y., Li, J., Tian, X., & Wang, Q. (2022).
Biological control of postharvest fungal decays in
citrus: a review. Critical Reviews in Food Science and
Nutrition, 62(4), 861-870. DOI:
10.1080/10408398.2020.1829542
-
Wei, L., Yang, C., Cui, L., Jin, M., & Osei, R. (2023). Bacillus
spp. isolated from pepper leaves and their function and
inhibition of the fungal plant pathogen Colletotrichum
scovillei. Egyptian Journal of Biological Pest Control,
33(1), 46. DOI: 10.1186/s41938-023-00686-z
-
Xie, S., Jiang, L., Wu, Q., Wan, W., Gan, Y., Zhao, L., & Wen,
J. (2022). Maize root exudates recruit Bacillus
amyloliquefaciens OR2-30 to inhibit Fusarium
graminearum infection. Phytopathology®, 112(9),
1886-1893. DOI: 10.1094/PHYTO-01-22-0028-R
-
Xu, S., Wang, Y., Hu, J., Chen, X., Qiu, Y., Shi, J., Wang G.,
& Xu, J. (2021). Isolation and characterization of
Bacillus amyloliquefaciens MQ01, a bifunctional
biocontrol bacterium with antagonistic activity against
Fusarium graminearum and biodegradation capacity of
zearalenone. Food Control, 130, 108259. DOI:
10.1016/j.foodcont.2021.108259
-
Xu, X., Cheng, Y., Fang, Z., Yin, J., Shen, H., & Ma, D. (2022).
Identification and utilization of a new Bacillus
amyloliquefaciens XY-1 against Fusarium head blight.
Frontiers in Plant Science, 13, 1055213. DOI:
10.3389/fpls.2022.1055213
-
Yi, Y., Luan, P., Fan, M., Wu, X., Sun, Z., Shang, Z., Yang,
Y., & Li, C. (2024). Antifungal efficacy of Bacillus
amyloliquefaciens ZK-9 against Fusarium
graminearum and analysis of the potential mechanism
of its lipopeptides. International Journal of Food
Microbiology, 422, 110821. DOI:
10.1016/j.ijfoodmicro.2024.110821
-
Zeidan, R., Hassan, Z. U., Ashfaq, M. Y., Al-Thani, R., &
Jaoua, S. (2024). Investigation of heat-resistant
antifungal agents from Bacillus amyloliquefaciens and
Bacillus subtilis for biocontrol of mycotoxigenic fungi.
Environmental Technology & Innovation, 36, 103748.
DOI: 10.1016/j.eti.2024.103748
-
Zhao, W., Hong, S.Y., Kim, J.Y., & Om, A.S. (2024). Effects
of temperature, pH, and relative humidity on the growth
of Penicillium paneum OM1 isolated from pears and its
patulin production. Fungal Biology, 128(4), 1885-1897.
DOI: 10.1016/j.funbio.2024.05.005