Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion

Yıl 2022, , 1 - 13, 30.06.2022
https://doi.org/10.35206/jan.1106268

Öz

In the present study, the content and antioxidant potential of phenolic compounds from five herbal infusions including Aspalathus linearis, Sambucus nigra, Rhamnus frangula, Plantago lanceolata and Equisetum arvense were analyzed. Additionally, simulated in vitro gastrointestinal digestion were conducted to predict the bioaccessibility of infusion phenolics. Accordingly, Rooibos infusion had the highest total phenolic (2191.18±93.39 mg GAE/100 g dw) and flavonoid content (1226.14±93.07 mg CE/100 g dw) as well as antioxidant capacity measured by CUPRAC (3124.12 mg TE/100 g dw) and FRAP (2634.95 mg TE/100 g dw) assays. On the other hand, the highest ABTS (2351 mg TE/100 g dw) and DPPH (475.19 mg TE/100 g dw) antioxidant capacity values were recorded for elderflower infusion. Based on the gastrointestinal digestion, retention of phenolics in the infusions was found to be variable througout mouth to intestine. It can be deduced from the results that those herbs can be considered as a valuable beverage alternatives with their high nutritional value.

Kaynakça

  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981.
  • Apak, R., Ozyurek, M., Guclu, K., & Capanoglu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64, 997-1027.
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anaytical Biochemistry, 239, 70-76. Chan, E., Lim, Y., Chong, K., Tan, J., & Wong, S. (2010). Antioxidant properties of tropical and temperate herbal teas. Journal of Food Composition and Analysis, 23, 185-189.
  • Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010-3014.
  • Joubert, E., & de Beer, D. (2012). Phenolic content and antioxidant activity of rooibos food ingredient extracts. Journal of Food Composition and Analysis, 27, 45-51. Kamiloglu, S., Demirci, M., Selen, S., Toydemir, G., Boyacioglu, D., & Capanoglu, E. (2014). Home processing of tomatoes (Solanum lycopersicum): effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. Journal of the Science of Food and Agriculture, 94, 2225-2233.
  • Kamiloglu, S., Ozkan, G., Isik, H., Horoz, O., Van Camp, J., & Capanoglu, E. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. LWT-Food Science. and Technology, 77, 475-481.
  • Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of methods to determine antioxidant capacities. Food Analytical Methods, 2, 41-60.
  • Kumaran, A., & Joel Karunakaran, R. (2006). Antioxidant activities of the methanol extract of Cardiospermum halicacabum. Pharmaceutical Biology, 44, 146-151.
  • Ménard, O., Cattenoz, T., Guillemin, H., Souchon, I., Deglaire, A., Dupont, D., & Picque, D. (2014). Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry, 145, 1039-1045.
  • Miller, N. J., & Rice-Evans, C. A. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research, 26, 195-199.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., & Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5, 1113-1124.
  • Oh, J., Jo, H., Cho, A. R., Kim, S. J., & Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31, 403-409.
  • Owen, R., Giacosa, A., Hull, W., Haubner, R., Spiegelhalder, B., & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer, 36, 1235-1247.
  • Ozkan, G., Kamiloglu, S., Ozdal, T., Boyacioglu, D., & Capanoglu, E. (2016). Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules, 21(3), 257.
  • Ozkan, G., Stübler, A.S., Aganovic, K., Draeger, G., Esatbeyoglu, T., & Capanoglu, E. (2021). A comparative study on physico-chemical properties and in vitro bioaccessibility of bioactive compounds in rosehip (Rosa canina L.) infusions treated by non-thermal and thermal treatments. Journal of Food Processing and Preservation. 1–12.
  • Ozkan, G., Kostka, T., Dräger, G., Capanoglu, E., & Esatbeyoglu, T. (2022a). Bioaccessibility and transepithelial transportation of cranberrybush (Viburnum opulus) phenolics: Effects of non-thermal processing and food matrix. Food Chemistry, 380, 132036.
  • Ozkan, G., Franco, P., De Marco, I., Capanoglu, E., & Esatbeyoglu, T. (2022b). Investigating the effects of supercritical antisolvent process and food models on antioxidant capacity, bioaccessibility and transepithelial transport of quercetin and rutin. Food & Function, 13(8), 4469-4477.
  • Pirbalouti, A. G., Setayesh, M., Siahpoosh, A., & Mashayekhi, H. (2013). Antioxidant activity, total phenolic and flavonoids contents of three herbs used as condiments and additives in pickles products. Herba Polonica, 59, 51-62.
  • Poljšak, B., & Raspor, P. (2008). The antioxidant and pro‐oxidant activity of vitamin C and trolox in vitro: a comparative study. Journal of Applied Toxicology: An International Journal, 28, 183-188.
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16, 144-158.
  • Sun, J., Chu, Y.-F., Wu, X., & Liu, R. H. 2002. Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50, 7449-7454.
  • Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606.
  • Tang, X. Y., Tang, L., Zhu, Y. G., Xing, B. S., Duan, J., & Zheng, M. H. (2006). Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environmental Pollution, 140, 279-285.
  • Toydemir, G., Capanoglu, E., Kamiloglu, S., Firatligil-Durmus, E., Sunay, A.E., Samanci, T., & Boyacioglu, D. (2015). Effects of honey addition on antioxidative properties of different herbal teas. Polish Journal of Food and Nutrition Sciences, 65, 127-135.
  • Wong, C., Cheung, W., Lau, Y., Bolanos de la Torre, A., & Owusu-Apenten, R. (2015). A frap assay at pH 7 unveils extra antioxidant activity from green, black, white and rooibos tea but not apple tea. Food and Nutrition Report, 1, 16-23.
  • Wu, T., Grootaert, C., Voorspoels, S., Jacobs, G., Pitart, J., Kamiloglu, S., Possemiers, S., Heinonen, M., Kardum, N., Glibetic, M., Smagghe, G., Raes, K., & Van Camp, J. (2017). Aronia (Aronia melanocarpa) phenolics bioavailability in a combined in vitro digestion/Caco-2 cell model is structure and colon region dependent. Journal of Functional Foods, 38, 128-139.
  • Zhang, M., Hettiarachchy, N.S., Horax, R., Kannan, A., Praisoody, A., & Muhundan, A. (2011). Phytochemicals, antioxidant and antimicrobial activity of Hibiscus sabdariffa, Centella asiatica, Moringa oleifera and Murraya koenigii leaves. Journal of Medicinal Plants Research, 5, 6672-6680.
  • Zielinski, A. A. F., Haminiuk, C. W. I., Alberti, A., Nogueira, A., Demiate, I. M., & Granato, D. (2014). A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Research International, 60, 246-254.

Bazı Bitkisel İnfüzyonların In Vitro Sindirim Sırasında Antioksidan Özelliklerinin İncelenmesi

Yıl 2022, , 1 - 13, 30.06.2022
https://doi.org/10.35206/jan.1106268

Öz

Bu çalışmada, Aspalathus linearis, Sambucus nigra, Rhamnus frangula, Plantago lanceolata ve Equisetum arvense olmak üzere beş bitkisel infüzyonun fenolik içeriği ile antioksidan potansiyeli analiz edilmiştir. Ayrıca, infüzyonlarda bulunan fenolik bileşiklerin biyoerişilebilirliklerini belirlemek amacıyla simüle edilmiş in vitro gastrointestinal sindirim gerçekleştirilmiştir. Sonuçlara göre, Rooibos infüzyonunun en yüksek toplam fenolik (2191.18±93.39 mg GAE/100 g ka), toplam flavonoid (1226.14±93.07 mg CE/100 g ka) ve antioksidan kapasiteye (CUPRAC, 3124.12 mg TE/100 g ka; FRAP, 2634.95 mg TE/100 g ka) sahip olduğu bulunmuştur. Diğer yandan, en yüksek ABTS (2351 mg TE/100 g ka) ve DPPH (475.19 mg TE/100 g ka) antioksidan kapasite değerleri mürver çiçeği infüzyonu ile elde edilmiştir. Gastrointestinal sindirim sonuçlarına göre, infüzyonlarda bulunan fenoliklerin elde edilme oranının ağızdan bağırsağa değişken olduğu bulunmuştur. Çalışmada elde edilen sonuçlara göre, bu bitkilerin yüksek besinsel içerikleri nedeniyle değerli bir içecek alternatifi olduğu sonucuna varılabilmektedir.

Kaynakça

  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981.
  • Apak, R., Ozyurek, M., Guclu, K., & Capanoglu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64, 997-1027.
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anaytical Biochemistry, 239, 70-76. Chan, E., Lim, Y., Chong, K., Tan, J., & Wong, S. (2010). Antioxidant properties of tropical and temperate herbal teas. Journal of Food Composition and Analysis, 23, 185-189.
  • Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010-3014.
  • Joubert, E., & de Beer, D. (2012). Phenolic content and antioxidant activity of rooibos food ingredient extracts. Journal of Food Composition and Analysis, 27, 45-51. Kamiloglu, S., Demirci, M., Selen, S., Toydemir, G., Boyacioglu, D., & Capanoglu, E. (2014). Home processing of tomatoes (Solanum lycopersicum): effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. Journal of the Science of Food and Agriculture, 94, 2225-2233.
  • Kamiloglu, S., Ozkan, G., Isik, H., Horoz, O., Van Camp, J., & Capanoglu, E. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. LWT-Food Science. and Technology, 77, 475-481.
  • Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of methods to determine antioxidant capacities. Food Analytical Methods, 2, 41-60.
  • Kumaran, A., & Joel Karunakaran, R. (2006). Antioxidant activities of the methanol extract of Cardiospermum halicacabum. Pharmaceutical Biology, 44, 146-151.
  • Ménard, O., Cattenoz, T., Guillemin, H., Souchon, I., Deglaire, A., Dupont, D., & Picque, D. (2014). Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry, 145, 1039-1045.
  • Miller, N. J., & Rice-Evans, C. A. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research, 26, 195-199.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., & Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5, 1113-1124.
  • Oh, J., Jo, H., Cho, A. R., Kim, S. J., & Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31, 403-409.
  • Owen, R., Giacosa, A., Hull, W., Haubner, R., Spiegelhalder, B., & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer, 36, 1235-1247.
  • Ozkan, G., Kamiloglu, S., Ozdal, T., Boyacioglu, D., & Capanoglu, E. (2016). Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules, 21(3), 257.
  • Ozkan, G., Stübler, A.S., Aganovic, K., Draeger, G., Esatbeyoglu, T., & Capanoglu, E. (2021). A comparative study on physico-chemical properties and in vitro bioaccessibility of bioactive compounds in rosehip (Rosa canina L.) infusions treated by non-thermal and thermal treatments. Journal of Food Processing and Preservation. 1–12.
  • Ozkan, G., Kostka, T., Dräger, G., Capanoglu, E., & Esatbeyoglu, T. (2022a). Bioaccessibility and transepithelial transportation of cranberrybush (Viburnum opulus) phenolics: Effects of non-thermal processing and food matrix. Food Chemistry, 380, 132036.
  • Ozkan, G., Franco, P., De Marco, I., Capanoglu, E., & Esatbeyoglu, T. (2022b). Investigating the effects of supercritical antisolvent process and food models on antioxidant capacity, bioaccessibility and transepithelial transport of quercetin and rutin. Food & Function, 13(8), 4469-4477.
  • Pirbalouti, A. G., Setayesh, M., Siahpoosh, A., & Mashayekhi, H. (2013). Antioxidant activity, total phenolic and flavonoids contents of three herbs used as condiments and additives in pickles products. Herba Polonica, 59, 51-62.
  • Poljšak, B., & Raspor, P. (2008). The antioxidant and pro‐oxidant activity of vitamin C and trolox in vitro: a comparative study. Journal of Applied Toxicology: An International Journal, 28, 183-188.
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16, 144-158.
  • Sun, J., Chu, Y.-F., Wu, X., & Liu, R. H. 2002. Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50, 7449-7454.
  • Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606.
  • Tang, X. Y., Tang, L., Zhu, Y. G., Xing, B. S., Duan, J., & Zheng, M. H. (2006). Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environmental Pollution, 140, 279-285.
  • Toydemir, G., Capanoglu, E., Kamiloglu, S., Firatligil-Durmus, E., Sunay, A.E., Samanci, T., & Boyacioglu, D. (2015). Effects of honey addition on antioxidative properties of different herbal teas. Polish Journal of Food and Nutrition Sciences, 65, 127-135.
  • Wong, C., Cheung, W., Lau, Y., Bolanos de la Torre, A., & Owusu-Apenten, R. (2015). A frap assay at pH 7 unveils extra antioxidant activity from green, black, white and rooibos tea but not apple tea. Food and Nutrition Report, 1, 16-23.
  • Wu, T., Grootaert, C., Voorspoels, S., Jacobs, G., Pitart, J., Kamiloglu, S., Possemiers, S., Heinonen, M., Kardum, N., Glibetic, M., Smagghe, G., Raes, K., & Van Camp, J. (2017). Aronia (Aronia melanocarpa) phenolics bioavailability in a combined in vitro digestion/Caco-2 cell model is structure and colon region dependent. Journal of Functional Foods, 38, 128-139.
  • Zhang, M., Hettiarachchy, N.S., Horax, R., Kannan, A., Praisoody, A., & Muhundan, A. (2011). Phytochemicals, antioxidant and antimicrobial activity of Hibiscus sabdariffa, Centella asiatica, Moringa oleifera and Murraya koenigii leaves. Journal of Medicinal Plants Research, 5, 6672-6680.
  • Zielinski, A. A. F., Haminiuk, C. W. I., Alberti, A., Nogueira, A., Demiate, I. M., & Granato, D. (2014). A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Research International, 60, 246-254.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Gülay Özkan 0000-0002-6375-1608

Aliye Aras 0000-0002-2188-4031

Esra Çapanoğlu Güven 0000-0003-0335-9433

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özkan, G., Aras, A., & Çapanoğlu Güven, E. (2022). Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion. Journal of Apitherapy and Nature, 5(1), 1-13. https://doi.org/10.35206/jan.1106268
AMA Özkan G, Aras A, Çapanoğlu Güven E. Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion. J.Apit.Nat. Haziran 2022;5(1):1-13. doi:10.35206/jan.1106268
Chicago Özkan, Gülay, Aliye Aras, ve Esra Çapanoğlu Güven. “Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion”. Journal of Apitherapy and Nature 5, sy. 1 (Haziran 2022): 1-13. https://doi.org/10.35206/jan.1106268.
EndNote Özkan G, Aras A, Çapanoğlu Güven E (01 Haziran 2022) Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion. Journal of Apitherapy and Nature 5 1 1–13.
IEEE G. Özkan, A. Aras, ve E. Çapanoğlu Güven, “Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion”, J.Apit.Nat., c. 5, sy. 1, ss. 1–13, 2022, doi: 10.35206/jan.1106268.
ISNAD Özkan, Gülay vd. “Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion”. Journal of Apitherapy and Nature 5/1 (Haziran 2022), 1-13. https://doi.org/10.35206/jan.1106268.
JAMA Özkan G, Aras A, Çapanoğlu Güven E. Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion. J.Apit.Nat. 2022;5:1–13.
MLA Özkan, Gülay vd. “Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion”. Journal of Apitherapy and Nature, c. 5, sy. 1, 2022, ss. 1-13, doi:10.35206/jan.1106268.
Vancouver Özkan G, Aras A, Çapanoğlu Güven E. Investigating the Antioxidant Properties of Some Herbal Infusions During In Vitro Digestion. J.Apit.Nat. 2022;5(1):1-13.
  • 23484   ASOS Index