Araştırma Makalesi
BibTex RIS Kaynak Göster

Integrating Computational Fabrication Methods with Architectural Education

Yıl 2022, Cilt: 3 Sayı: 2, 111 - 134, 30.09.2022
https://doi.org/10.53710/jcode.1149803

Öz

Today, technology is developing rapidly. It changes architectural design and building techniques. To these changes up education system should be updated and be integrated with the novel technology. Tomorrow’s professionals only be educated with this way. To make novel technology a part of architectural education, computational fabrication laboratories should be established and be integrated with architectural curriculum. They have the potential to transform architectural education processes. Within this context, this study tries to integrate computational fabrication methods with architectural education. The aim of the study is to share the process and results of a series of exercises applied to the use of computational fabrication tools and methods at the undergraduate level of architectural education. The study deals with exercise processes in a multidimensional scope. In this framework, constructivist learning processes, the concept of metacognition, the flipped classroom model and portfolio evaluation method played a role in the creation and evaluation of the exercise processes. Integrating computational fabrication laboratories with educational processes brings the student to play an active role in the exercise process. This approach is defined as constructivist learning process. In this way, it is ensured that the students can construct their own thinking and understanding processes. While the verb "teaching" is in question in conventional or objectivist education processes, the verb "learning" comes to the fore in constructivist processes. The instructor does not give the information directly but directs the student to reach the information. Flipped classroom model and portfolio evaluation are used as the methods of this study. The background of the exercises is supported by constructivist learning processes and metacognition concept. Within the exercise processes computational fabrication processes such as CNC laser machining and robotic milling were experienced. Within this study four exercises were performed to make the students experience computational fabrication methods: Unfolding, Tessellation, Sectioning, Folding and Moulding. To evaluate the exercise series success portfolio evaluation method was used. The answers in the portfolio to the questions of “What is the aim of this study?” and “What did you learn from this study?” are compared with the aim and learning outcomes of the exercises. As a result of this study, it is seen that the students’ knowledge on file-to-factory process is increased. They learned how to make ready a parametric model for computational fabrication. Based on student portfolios, it has been determined that students have begun to realize the potentials of computational fabrication tools. The students learned how to use computer aided manufacturing software, and even they could manage to define toolpaths on their own. This shows that, undergraduate architectural education level is not early to teach students computational fabrication tools and software.

Destekleyen Kurum

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

FAY-2018-7252

Teşekkür

This study’s digital fabrication phases were carried out within KTU CODEFAB laboratory which was established with a support of Karadeniz Technical University Unit of Scientific Research Projects (KTU BAP – Project ID: 7252 – Project Code: FAY-2018-7252). The study is prepared for sharing the findings of the PhD. Study titled “Improving computational thinking in architecture with learning by doing”. The exercises were carried within Computational Modelling in Architecture III. We acknowledge the students who participated in the exercise processes.

Kaynakça

  • Celani, G. (2012). Digital fabrication laboratories: pedagogy and impacts on architectural education. In Digital Fabrication (pp. 469-482). Birkhäuser, Basel.
  • Erten, P. (2019). Z kuşağının dijital teknolojiye yönelik tutumları. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 10(1), 190-202.
  • Gershenfeld, N. A. (2008). Fab: the coming revolution on your desktop--from personal computers to personal fabrication. Basic Books (AZ).
  • Iwamoto, L. (2009). Digital fabrications: architectural and material techniques. Princeton Architectural Press.
  • Kolarevic, B. (2003). Digital production. Architecture in the digital age: design and manufacturing, 38-63.
  • Oblinger, D., & Oblinger, J. (2005). Is it age or IT: First steps toward understanding the net generation. Educating the net generation, 2(1-2), 20.
  • Popescu-Mitroia, M. M., Todorescu, L. L., & Greculescu, A. (2015). The usefulness of portfolios as assessment tools in higher education. Procedia-Social and Behavioral Sciences, 191, 2645-2649.
  • Prensky, M. (2001). Digital natives, digital immigrants part 2: Do they really think differently?. On the horizon.
  • Ronchetti, M. (2010). Using video lectures to make teaching more interactive. International Journal of Emerging Technologies in Learning (iJET), 5(2), 45-48.
  • Sheil, B. (2014). The digital generation. Educating Architects: How Tomorrow’s Practitioners will Learn Today, Thames & Hudson, London, 138-144.
  • Schoenfeld, A. H. (1987). Cognitive Science and Mahematics Education: An Overview, Cognitive Science and Mathematics Education, ed. Alan H. Schoenfeld, Routledge, New York, 1-32.
  • Siemens, G. (2005). Connectivism: A Learning Theory for the Digital Age. International Journal of Instructional Technology and Distance Learning, 2, 1.
  • Twenge, J. M., Campbell, S. M., Hoffman, B. J., & Lance, C. E. (2010). Generational differences in work values: Leisure and extrinsic values increasing, social and intrinsic values decreasing. Journal of management, 36(5), 1117-1142.
  • Wilson, B.G. (1996). What is a Constructivist Learning Environment?. Constructivist Learning Environments: Case Studies in Instructional Design, ed. B. G. Wilson, Educational Technology Publications, New Jersey, 3-8.

Sayısal Fabrikasyon Yöntemlerini Mimarlık Eğitimi ile Bütünleştirmek

Yıl 2022, Cilt: 3 Sayı: 2, 111 - 134, 30.09.2022
https://doi.org/10.53710/jcode.1149803

Öz

Günümüzde teknoloji büyük bir hızla gelişmektedir. Teknolojinin mimarlık alanındaki yansımaları tasarım ve üretim süreçleri bağlamında kendini göstermektedir. Geleceğin mimarlarının bu teknolojiyi kullanabilmeleri ve katkı sağlayabilmeleri ise ancak mimarlık eğitimi süreçlerinin güncellenmesiyle olacaktır. Sayısal tasarım ve fabrikasyon laboratuvarları eğitim sürecinin bir parçası haline gelmelidir. Bu bağlamda çalışmanın amacı sayısal fabrikasyon yöntemlerinin mimarlık eğitimi ile bütünleştirilmesine yönelik uygulanan bir dizi egzersizin sürecini ve sonuçlarını paylaşmaktır. Uygulanan egzersizler çok yönlü bir yapıya sahiptir. Egzersizlerin kurgulanma sürecinde konstrüktivist öğrenme süreçleri, üstbiliş kavramlarının yanı sıra ters-yüz edilmiş sınıf modeli, portfolyo değerlendirmesi gibi yöntemler kullanılmıştır. Öğrencinin ders sürecinde aktif rol oynadığı konstrüktivist öğrenme süreci egzersiz kurgusunun temelini oluşturmaktadır. Bu aşamada öğretme eyleminin yerini öğrenme eylemi almaktadır. Çalışma kapsamında dört adet egzersiz uygulaması yapılmıştır: Cisim açılımı, teselasyon, dilimleme, katlama ve dökme. Egzersiz süreçlerinin başarısını ölçmek için portfolyo değerlendirme yöntemi ile elde edilen veriler kullanılmıştır. Bu bağlamda öğrencilerin portfolyolarında “Sizce bu çalışmanın amacı nedir?” ve “Bu çalışmadan ne öğrendiniz?” sorularına verdikleri cevaplar ile egzersizlerin amacı ve öğrenim çıktıları arasında karşılaştırmalar yapılmıştır. Çalışmanın sonucunda öğrencilerin parametrik model oluşturma, bu modeli sayısal üretim süreci için hazır hale getirme ve sayısal üretim dosyasının hazırlanması konularında bilgi sahibi oldukları gözlenmiştir. Öğrenciler sayısal fabrikasyon yöntemleri ve araçlarının sahip oldukları potansiyellerin farkına varmaya başlamışlardır. Öğrenciler sayısal üretime ve simülasyona yönelik bilgisayar programlarını kullanabilmeyi başarmışlardır. Bu durum, lisans düzeyinde sayısal fabrikasyon yöntemlerinin başarılı bir şekilde yürütülebileceğini göstermektedir.

Proje Numarası

FAY-2018-7252

Kaynakça

  • Celani, G. (2012). Digital fabrication laboratories: pedagogy and impacts on architectural education. In Digital Fabrication (pp. 469-482). Birkhäuser, Basel.
  • Erten, P. (2019). Z kuşağının dijital teknolojiye yönelik tutumları. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 10(1), 190-202.
  • Gershenfeld, N. A. (2008). Fab: the coming revolution on your desktop--from personal computers to personal fabrication. Basic Books (AZ).
  • Iwamoto, L. (2009). Digital fabrications: architectural and material techniques. Princeton Architectural Press.
  • Kolarevic, B. (2003). Digital production. Architecture in the digital age: design and manufacturing, 38-63.
  • Oblinger, D., & Oblinger, J. (2005). Is it age or IT: First steps toward understanding the net generation. Educating the net generation, 2(1-2), 20.
  • Popescu-Mitroia, M. M., Todorescu, L. L., & Greculescu, A. (2015). The usefulness of portfolios as assessment tools in higher education. Procedia-Social and Behavioral Sciences, 191, 2645-2649.
  • Prensky, M. (2001). Digital natives, digital immigrants part 2: Do they really think differently?. On the horizon.
  • Ronchetti, M. (2010). Using video lectures to make teaching more interactive. International Journal of Emerging Technologies in Learning (iJET), 5(2), 45-48.
  • Sheil, B. (2014). The digital generation. Educating Architects: How Tomorrow’s Practitioners will Learn Today, Thames & Hudson, London, 138-144.
  • Schoenfeld, A. H. (1987). Cognitive Science and Mahematics Education: An Overview, Cognitive Science and Mathematics Education, ed. Alan H. Schoenfeld, Routledge, New York, 1-32.
  • Siemens, G. (2005). Connectivism: A Learning Theory for the Digital Age. International Journal of Instructional Technology and Distance Learning, 2, 1.
  • Twenge, J. M., Campbell, S. M., Hoffman, B. J., & Lance, C. E. (2010). Generational differences in work values: Leisure and extrinsic values increasing, social and intrinsic values decreasing. Journal of management, 36(5), 1117-1142.
  • Wilson, B.G. (1996). What is a Constructivist Learning Environment?. Constructivist Learning Environments: Case Studies in Instructional Design, ed. B. G. Wilson, Educational Technology Publications, New Jersey, 3-8.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlık
Bölüm Araştırma Makaleleri
Yazarlar

Selin Oktan

Serbülent Vural 0000-0002-4777-2839

Proje Numarası FAY-2018-7252
Yayımlanma Tarihi 30 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 2

Kaynak Göster

APA Oktan, S., & Vural, S. (2022). Integrating Computational Fabrication Methods with Architectural Education. Journal of Computational Design, 3(2), 111-134. https://doi.org/10.53710/jcode.1149803

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.