Araştırma Makalesi
BibTex RIS Kaynak Göster

Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu

Yıl 2023, , 226 - 236, 03.07.2023
https://doi.org/10.7240/jeps.1233332

Öz

Bu çalışmada çok dallanmış poliglisidol oligomeri (PG) ve poliglisidol esaslı çok dallanmış üretan metakrilat (PGUM) oligomeri glisidol ve 2-izosiyanatoetil metakrilat (IEM) kullanılarak sentezlenmiştir. Oligomerlerin yapıları FT-IR ile aydınlatılmıştır. Daha sonra PGUM, Metakril-POSS, fotobaşlatıcı (Irg-184), çapraz bağlayıcı olarak trimetilolpropan triakrilat (TMPA) ve AgNO3 karıştırılarak hibrit nanokompozit film hazırlanmıştır. Hibrit nanokompozit filmlerin mekanik ve termal özelliklerinin yanısıra kaplama performansları incelenmiştir. Metakrilik grupların çapraz bağlanması, gümüş iyonlarının kararlı nanopartiküllere (AgNP) indirgenmesi ve AgNP'lerin nanokompozitlere dahil edilmesi için UV ışığı kullanılmıştır. AgNP'lerin oluşumu TEM analizi ile doğrulanmıştır. Hibrit nanokompozit filmlerin Gram-pozitif ve Gram-negatif bakterilere karşı antibakteriyel aktiviteside ayrıca gözlenmiştir.

Destekleyen Kurum

Tübitak

Proje Numarası

114M049

Kaynakça

  • [1] Balaz, A.C., Emrick, T., Russel, T.P. (2006). Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science, 314 (5802), 1107-1110.
  • [1] Balaz, A.C., Emrick, T., Russel, T.P. (2006). Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science, 314 (5802), 1107-1110.
  • [2] Sen, M. (2020). Nanocomposite Materials. In (Ed.), Nanotechnology and the Environment. IntechOpen. https://doi.org/10.5772/intechopen.93047
  • [2] Sen, M. (2020). Nanocomposite Materials. In (Ed.), Nanotechnology and the Environment. IntechOpen. https://doi.org/10.5772/intechopen.93047
  • [3] Darwish, M.S.A., Mostafa, M.H., Al-Harbi, L.M. (2022). Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci., 23(3),1023. https://doi.org/10.3390/ijms23031023
  • [3] Darwish, M.S.A., Mostafa, M.H., Al-Harbi, L.M. (2022). Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci., 23(3),1023. https://doi.org/10.3390/ijms23031023
  • [4] Judeınstein, P., Sanchez, C. (1996). Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem., 6,511.
  • [4] Judeınstein, P., Sanchez, C. (1996). Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem., 6,511.
  • [5] Mutin, P.H., Guerrero, G., Vioux, A. (2003). Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C. R. Chim., 6, 1153-1164.
  • [5] Mutin, P.H., Guerrero, G., Vioux, A. (2003). Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C. R. Chim., 6, 1153-1164.
  • [6] Su, C.H., Chiu, Y.P., Teng, C.C., Chiang, C.L. (2010). Preparation, characterization and thermal properties of organiceinorganic composites involving epoxy and polyhedral oligomeric silsesquioxane (POSS). J Polym Res., 17, 673-81,
  • [6] Su, C.H., Chiu, Y.P., Teng, C.C., Chiang, C.L. (2010). Preparation, characterization and thermal properties of organiceinorganic composites involving epoxy and polyhedral oligomeric silsesquioxane (POSS). J Polym Res., 17, 673-81,
  • [7] Marcinkowska, A., Przadka, D., Dudziec, B., Szczesniak, K., Andrzejewska, E. (2019). Anchor Effect in Polymerization Kinetics: Case of Monofunctionalized POSS. Polymers, 11(3), 515. https://doi.org/10.3390/polym11030515
  • [7] Marcinkowska, A., Przadka, D., Dudziec, B., Szczesniak, K., Andrzejewska, E. (2019). Anchor Effect in Polymerization Kinetics: Case of Monofunctionalized POSS. Polymers, 11(3), 515. https://doi.org/10.3390/polym11030515
  • [8] Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ahmad, T. (2013). Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids and Surfaces B: Biointerfaces, 101, 243– 250.
  • [8] Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ahmad, T. (2013). Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids and Surfaces B: Biointerfaces, 101, 243– 250.
  • [9] Balan, L., Malval, J., & Lougnot, D. (2010). In Situ Photochemically assisted Synthesis of Silver Nanoparticles in Polymer Matrixes. In (Ed.), Silver Nanoparticles. IntechOpen. https://doi.org/10.5772/8504
  • [9] Balan, L., Malval, J., & Lougnot, D. (2010). In Situ Photochemically assisted Synthesis of Silver Nanoparticles in Polymer Matrixes. In (Ed.), Silver Nanoparticles. IntechOpen. https://doi.org/10.5772/8504
  • [10] Abid, J.P., Wark, A.W., Brevet, P.F., Girault, H.H. (2002). Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun., 7, 792-793.
  • [10] Abid, J.P., Wark, A.W., Brevet, P.F., Girault, H.H. (2002). Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun., 7, 792-793.
  • [11] Sun Y, Xia Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-2179.
  • [11] Sun Y, Xia Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-2179.
  • [12] Zhang, Y., Yang, P., Zhang L. (2012). Size- and shape-tunable silver nanoparticles created through facile aqueous synthesis. Journal of Nanoparticle Research, 15, 1329.
  • [12] Zhang, Y., Yang, P., Zhang L. (2012). Size- and shape-tunable silver nanoparticles created through facile aqueous synthesis. Journal of Nanoparticle Research, 15, 1329.
  • [13] Shenashen, M.A., El-Safty, S.A., Elshehy, E.A. (2014). Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Particle & Particle Systems Characterization, 31(3), 293-316.
  • [13] Shenashen, M.A., El-Safty, S.A., Elshehy, E.A. (2014). Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Particle & Particle Systems Characterization, 31(3), 293-316.
  • [14] Malina,D., Sobczak-Kupıec, A., Wzorek, Z., Kowalskı Z. (2012). Green synthesis of silver nanoparticles using Argemone. Digest Journal of Nanomaterials and Biostructures, 7(4), 1527-1534.
  • [14] Malina,D., Sobczak-Kupıec, A., Wzorek, Z., Kowalskı Z. (2012). Green synthesis of silver nanoparticles using Argemone. Digest Journal of Nanomaterials and Biostructures, 7(4), 1527-1534.
  • [15] Lue J.T. (2007). . Encyclopedia of Nanoscience and Nanotechnology, Ed: Nalwa H.S., Valencia CA: American Scientific Publishers.
  • [15] Lue J.T. (2007). . Encyclopedia of Nanoscience and Nanotechnology, Ed: Nalwa H.S., Valencia CA: American Scientific Publishers.
  • [16] Amendola, V., Polizzi, S., Meneghetti, M. (2007). Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 23, 6766–70.
  • [16] Amendola, V., Polizzi, S., Meneghetti, M. (2007). Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 23, 6766–70.
  • [17] Balan L., Burget, D. (2006). Synthesis of metal/polymer nanocomposite by UV-radiation curing. European Polymer Journal, 42(12), 3180–3189.
  • [17] Balan L., Burget, D. (2006). Synthesis of metal/polymer nanocomposite by UV-radiation curing. European Polymer Journal, 42(12), 3180–3189.
  • [18] Sawada, H., Sasaki, A., Sasazawa, K., Toriba, K., Kakehi, H., Miura, M., Isu, N. (2008). Preparation of Colloidal Stable Fluoroalkyl End-Capped Oligomer/Silver Nanocomposites. Polym. Adv. Tech., 19, 419 – 424.
  • [18] Sawada, H., Sasaki, A., Sasazawa, K., Toriba, K., Kakehi, H., Miura, M., Isu, N. (2008). Preparation of Colloidal Stable Fluoroalkyl End-Capped Oligomer/Silver Nanocomposites. Polym. Adv. Tech., 19, 419 – 424.
  • [19] Sudeep, P.K., Kamat, P.V. (2005). Photosensitized growth of silver nanoparticles under visible light irradiation: a mechanistic investigation.. Chemistry of Materials, 17(22), 5404– 5410.
  • [19] Sudeep, P.K., Kamat, P.V. (2005). Photosensitized growth of silver nanoparticles under visible light irradiation: a mechanistic investigation.. Chemistry of Materials, 17(22), 5404– 5410.
  • [20] Yağcı, Y., Sangermano, M., Rizza, G., 2008. In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes. Chemical Communications, 24, 2771–2773.
  • [20] Yağcı, Y., Sangermano, M., Rizza, G., 2008. In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes. Chemical Communications, 24, 2771–2773.
  • [21] Pencheva, D., Bryaskova, R., Kantardjie,T. (2012). Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Materials Science and Engineering C., 32, 2048–2051.
  • [21] Pencheva, D., Bryaskova, R., Kantardjie,T. (2012). Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Materials Science and Engineering C., 32, 2048–2051.
  • [22] Kim, T., Nam, S., Lim, S., Kim, H. (2012). Facile In-Situ Preparation of Poly(Acrylic Acid)- Silver Nanocomposite Thin Films with Highly Dispersed Silver Nanoparticles. Molecular Crystals and Liquid Crystals, 568(1),170-178.
  • [22] Kim, T., Nam, S., Lim, S., Kim, H. (2012). Facile In-Situ Preparation of Poly(Acrylic Acid)- Silver Nanocomposite Thin Films with Highly Dispersed Silver Nanoparticles. Molecular Crystals and Liquid Crystals, 568(1),170-178.
  • [23] Kong H., Jang J. (2006). One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem. Commun., 28, 3010– 3012.
  • [23] Kong H., Jang J. (2006). One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem. Commun., 28, 3010– 3012.
  • [24] Balan, L., Schneider, R., Lougnot, D.J. (2008). A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization”, Progress in Organic Coatings, 62(3), 351–357.
  • [24] Balan, L., Schneider, R., Lougnot, D.J. (2008). A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization”, Progress in Organic Coatings, 62(3), 351–357.
  • [25] Awwad, A.M., Salem, N.M., Abdeen A.O., (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4,29.
  • [25] Awwad, A.M., Salem, N.M., Abdeen A.O., (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4,29.
  • [26] El-sherbiny, I.M., Salih, E., Reicha, F.M., (2013). Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity. Journal of Nanostructure in Chemistry, 3, 8.
  • [26] El-sherbiny, I.M., Salih, E., Reicha, F.M., (2013). Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity. Journal of Nanostructure in Chemistry, 3, 8.
  • [27] Krishnaraj, C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antimicrobial activity against water borne pathogens. Colloids Surf. B. Biointerfaces, 76, 50– 56.
  • [27] Krishnaraj, C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antimicrobial activity against water borne pathogens. Colloids Surf. B. Biointerfaces, 76, 50– 56.
  • [28] Nabikhan A., Kandasamy K., Raj A., Alikunhi N.M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum. L. Colloids Surf. B. Biointerfaces, 79, 488–493.
  • [28] Nabikhan A., Kandasamy K., Raj A., Alikunhi N.M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum. L. Colloids Surf. B. Biointerfaces, 79, 488–493.
  • [29] Bayramoğlu, G., Kahraman, M.V., Apohan, N.K. Güngör, A. (2006). Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane group. Progress in Organic Coatings, 57, 50-55.
  • [29] Bayramoğlu, G., Kahraman, M.V., Apohan, N.K. Güngör, A. (2006). Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane group. Progress in Organic Coatings, 57, 50-55.
  • [30] Toker, R.D, Kayaman, N.A, Kahraman M.V. (2013). UV-curable nano-silver containing polyurethane based organic-inorganic hybrid coatings. Progress in Organic Coatings, 76(9), 1243–1250.
  • [30] Toker, R.D, Kayaman, N.A, Kahraman M.V. (2013). UV-curable nano-silver containing polyurethane based organic-inorganic hybrid coatings. Progress in Organic Coatings, 76(9), 1243–1250.
  • [31] Oktay, B., Kayaman, N.A. (2013). Maleimide Containing UV-Cured Hybrid Coatings. Advances in Polymer Technology, 32, 21341.
  • [31] Oktay, B., Kayaman, N.A. (2013). Maleimide Containing UV-Cured Hybrid Coatings. Advances in Polymer Technology, 32, 21341.
  • [32] Oktay, B., Kayaman, N.A. (2013). Polydimethysiloxane (PDMS)-based antibacterial organic-inorganic hybrid coatings. Journal of Coatings Technology and Research, 10 (6), 785-798.
  • [32] Oktay, B., Kayaman, N.A. (2013). Polydimethysiloxane (PDMS)-based antibacterial organic-inorganic hybrid coatings. Journal of Coatings Technology and Research, 10 (6), 785-798.

Synthesis and Characterization of Polyglycidol Based Hyperbranched Urethane Methacrylate/ POSS/ Silver Nanoparticle Nanocomposites

Yıl 2023, , 226 - 236, 03.07.2023
https://doi.org/10.7240/jeps.1233332

Öz

Proje Numarası

114M049

Kaynakça

  • [1] Balaz, A.C., Emrick, T., Russel, T.P. (2006). Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science, 314 (5802), 1107-1110.
  • [1] Balaz, A.C., Emrick, T., Russel, T.P. (2006). Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science, 314 (5802), 1107-1110.
  • [2] Sen, M. (2020). Nanocomposite Materials. In (Ed.), Nanotechnology and the Environment. IntechOpen. https://doi.org/10.5772/intechopen.93047
  • [2] Sen, M. (2020). Nanocomposite Materials. In (Ed.), Nanotechnology and the Environment. IntechOpen. https://doi.org/10.5772/intechopen.93047
  • [3] Darwish, M.S.A., Mostafa, M.H., Al-Harbi, L.M. (2022). Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci., 23(3),1023. https://doi.org/10.3390/ijms23031023
  • [3] Darwish, M.S.A., Mostafa, M.H., Al-Harbi, L.M. (2022). Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci., 23(3),1023. https://doi.org/10.3390/ijms23031023
  • [4] Judeınstein, P., Sanchez, C. (1996). Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem., 6,511.
  • [4] Judeınstein, P., Sanchez, C. (1996). Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem., 6,511.
  • [5] Mutin, P.H., Guerrero, G., Vioux, A. (2003). Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C. R. Chim., 6, 1153-1164.
  • [5] Mutin, P.H., Guerrero, G., Vioux, A. (2003). Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C. R. Chim., 6, 1153-1164.
  • [6] Su, C.H., Chiu, Y.P., Teng, C.C., Chiang, C.L. (2010). Preparation, characterization and thermal properties of organiceinorganic composites involving epoxy and polyhedral oligomeric silsesquioxane (POSS). J Polym Res., 17, 673-81,
  • [6] Su, C.H., Chiu, Y.P., Teng, C.C., Chiang, C.L. (2010). Preparation, characterization and thermal properties of organiceinorganic composites involving epoxy and polyhedral oligomeric silsesquioxane (POSS). J Polym Res., 17, 673-81,
  • [7] Marcinkowska, A., Przadka, D., Dudziec, B., Szczesniak, K., Andrzejewska, E. (2019). Anchor Effect in Polymerization Kinetics: Case of Monofunctionalized POSS. Polymers, 11(3), 515. https://doi.org/10.3390/polym11030515
  • [7] Marcinkowska, A., Przadka, D., Dudziec, B., Szczesniak, K., Andrzejewska, E. (2019). Anchor Effect in Polymerization Kinetics: Case of Monofunctionalized POSS. Polymers, 11(3), 515. https://doi.org/10.3390/polym11030515
  • [8] Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ahmad, T. (2013). Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids and Surfaces B: Biointerfaces, 101, 243– 250.
  • [8] Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ahmad, T. (2013). Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids and Surfaces B: Biointerfaces, 101, 243– 250.
  • [9] Balan, L., Malval, J., & Lougnot, D. (2010). In Situ Photochemically assisted Synthesis of Silver Nanoparticles in Polymer Matrixes. In (Ed.), Silver Nanoparticles. IntechOpen. https://doi.org/10.5772/8504
  • [9] Balan, L., Malval, J., & Lougnot, D. (2010). In Situ Photochemically assisted Synthesis of Silver Nanoparticles in Polymer Matrixes. In (Ed.), Silver Nanoparticles. IntechOpen. https://doi.org/10.5772/8504
  • [10] Abid, J.P., Wark, A.W., Brevet, P.F., Girault, H.H. (2002). Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun., 7, 792-793.
  • [10] Abid, J.P., Wark, A.W., Brevet, P.F., Girault, H.H. (2002). Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun., 7, 792-793.
  • [11] Sun Y, Xia Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-2179.
  • [11] Sun Y, Xia Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-2179.
  • [12] Zhang, Y., Yang, P., Zhang L. (2012). Size- and shape-tunable silver nanoparticles created through facile aqueous synthesis. Journal of Nanoparticle Research, 15, 1329.
  • [12] Zhang, Y., Yang, P., Zhang L. (2012). Size- and shape-tunable silver nanoparticles created through facile aqueous synthesis. Journal of Nanoparticle Research, 15, 1329.
  • [13] Shenashen, M.A., El-Safty, S.A., Elshehy, E.A. (2014). Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Particle & Particle Systems Characterization, 31(3), 293-316.
  • [13] Shenashen, M.A., El-Safty, S.A., Elshehy, E.A. (2014). Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Particle & Particle Systems Characterization, 31(3), 293-316.
  • [14] Malina,D., Sobczak-Kupıec, A., Wzorek, Z., Kowalskı Z. (2012). Green synthesis of silver nanoparticles using Argemone. Digest Journal of Nanomaterials and Biostructures, 7(4), 1527-1534.
  • [14] Malina,D., Sobczak-Kupıec, A., Wzorek, Z., Kowalskı Z. (2012). Green synthesis of silver nanoparticles using Argemone. Digest Journal of Nanomaterials and Biostructures, 7(4), 1527-1534.
  • [15] Lue J.T. (2007). . Encyclopedia of Nanoscience and Nanotechnology, Ed: Nalwa H.S., Valencia CA: American Scientific Publishers.
  • [15] Lue J.T. (2007). . Encyclopedia of Nanoscience and Nanotechnology, Ed: Nalwa H.S., Valencia CA: American Scientific Publishers.
  • [16] Amendola, V., Polizzi, S., Meneghetti, M. (2007). Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 23, 6766–70.
  • [16] Amendola, V., Polizzi, S., Meneghetti, M. (2007). Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 23, 6766–70.
  • [17] Balan L., Burget, D. (2006). Synthesis of metal/polymer nanocomposite by UV-radiation curing. European Polymer Journal, 42(12), 3180–3189.
  • [17] Balan L., Burget, D. (2006). Synthesis of metal/polymer nanocomposite by UV-radiation curing. European Polymer Journal, 42(12), 3180–3189.
  • [18] Sawada, H., Sasaki, A., Sasazawa, K., Toriba, K., Kakehi, H., Miura, M., Isu, N. (2008). Preparation of Colloidal Stable Fluoroalkyl End-Capped Oligomer/Silver Nanocomposites. Polym. Adv. Tech., 19, 419 – 424.
  • [18] Sawada, H., Sasaki, A., Sasazawa, K., Toriba, K., Kakehi, H., Miura, M., Isu, N. (2008). Preparation of Colloidal Stable Fluoroalkyl End-Capped Oligomer/Silver Nanocomposites. Polym. Adv. Tech., 19, 419 – 424.
  • [19] Sudeep, P.K., Kamat, P.V. (2005). Photosensitized growth of silver nanoparticles under visible light irradiation: a mechanistic investigation.. Chemistry of Materials, 17(22), 5404– 5410.
  • [19] Sudeep, P.K., Kamat, P.V. (2005). Photosensitized growth of silver nanoparticles under visible light irradiation: a mechanistic investigation.. Chemistry of Materials, 17(22), 5404– 5410.
  • [20] Yağcı, Y., Sangermano, M., Rizza, G., 2008. In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes. Chemical Communications, 24, 2771–2773.
  • [20] Yağcı, Y., Sangermano, M., Rizza, G., 2008. In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes. Chemical Communications, 24, 2771–2773.
  • [21] Pencheva, D., Bryaskova, R., Kantardjie,T. (2012). Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Materials Science and Engineering C., 32, 2048–2051.
  • [21] Pencheva, D., Bryaskova, R., Kantardjie,T. (2012). Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Materials Science and Engineering C., 32, 2048–2051.
  • [22] Kim, T., Nam, S., Lim, S., Kim, H. (2012). Facile In-Situ Preparation of Poly(Acrylic Acid)- Silver Nanocomposite Thin Films with Highly Dispersed Silver Nanoparticles. Molecular Crystals and Liquid Crystals, 568(1),170-178.
  • [22] Kim, T., Nam, S., Lim, S., Kim, H. (2012). Facile In-Situ Preparation of Poly(Acrylic Acid)- Silver Nanocomposite Thin Films with Highly Dispersed Silver Nanoparticles. Molecular Crystals and Liquid Crystals, 568(1),170-178.
  • [23] Kong H., Jang J. (2006). One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem. Commun., 28, 3010– 3012.
  • [23] Kong H., Jang J. (2006). One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem. Commun., 28, 3010– 3012.
  • [24] Balan, L., Schneider, R., Lougnot, D.J. (2008). A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization”, Progress in Organic Coatings, 62(3), 351–357.
  • [24] Balan, L., Schneider, R., Lougnot, D.J. (2008). A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization”, Progress in Organic Coatings, 62(3), 351–357.
  • [25] Awwad, A.M., Salem, N.M., Abdeen A.O., (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4,29.
  • [25] Awwad, A.M., Salem, N.M., Abdeen A.O., (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4,29.
  • [26] El-sherbiny, I.M., Salih, E., Reicha, F.M., (2013). Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity. Journal of Nanostructure in Chemistry, 3, 8.
  • [26] El-sherbiny, I.M., Salih, E., Reicha, F.M., (2013). Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity. Journal of Nanostructure in Chemistry, 3, 8.
  • [27] Krishnaraj, C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antimicrobial activity against water borne pathogens. Colloids Surf. B. Biointerfaces, 76, 50– 56.
  • [27] Krishnaraj, C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antimicrobial activity against water borne pathogens. Colloids Surf. B. Biointerfaces, 76, 50– 56.
  • [28] Nabikhan A., Kandasamy K., Raj A., Alikunhi N.M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum. L. Colloids Surf. B. Biointerfaces, 79, 488–493.
  • [28] Nabikhan A., Kandasamy K., Raj A., Alikunhi N.M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum. L. Colloids Surf. B. Biointerfaces, 79, 488–493.
  • [29] Bayramoğlu, G., Kahraman, M.V., Apohan, N.K. Güngör, A. (2006). Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane group. Progress in Organic Coatings, 57, 50-55.
  • [29] Bayramoğlu, G., Kahraman, M.V., Apohan, N.K. Güngör, A. (2006). Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane group. Progress in Organic Coatings, 57, 50-55.
  • [30] Toker, R.D, Kayaman, N.A, Kahraman M.V. (2013). UV-curable nano-silver containing polyurethane based organic-inorganic hybrid coatings. Progress in Organic Coatings, 76(9), 1243–1250.
  • [30] Toker, R.D, Kayaman, N.A, Kahraman M.V. (2013). UV-curable nano-silver containing polyurethane based organic-inorganic hybrid coatings. Progress in Organic Coatings, 76(9), 1243–1250.
  • [31] Oktay, B., Kayaman, N.A. (2013). Maleimide Containing UV-Cured Hybrid Coatings. Advances in Polymer Technology, 32, 21341.
  • [31] Oktay, B., Kayaman, N.A. (2013). Maleimide Containing UV-Cured Hybrid Coatings. Advances in Polymer Technology, 32, 21341.
  • [32] Oktay, B., Kayaman, N.A. (2013). Polydimethysiloxane (PDMS)-based antibacterial organic-inorganic hybrid coatings. Journal of Coatings Technology and Research, 10 (6), 785-798.
  • [32] Oktay, B., Kayaman, N.A. (2013). Polydimethysiloxane (PDMS)-based antibacterial organic-inorganic hybrid coatings. Journal of Coatings Technology and Research, 10 (6), 785-798.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Gülay Bayramoğlu 0000-0002-0375-0072

Proje Numarası 114M049
Yayımlanma Tarihi 3 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bayramoğlu, G. (2023). Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences, 35(2), 226-236. https://doi.org/10.7240/jeps.1233332
AMA Bayramoğlu G. Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu. JEPS. Temmuz 2023;35(2):226-236. doi:10.7240/jeps.1233332
Chicago Bayramoğlu, Gülay. “Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması Ve Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences 35, sy. 2 (Temmuz 2023): 226-36. https://doi.org/10.7240/jeps.1233332.
EndNote Bayramoğlu G (01 Temmuz 2023) Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences 35 2 226–236.
IEEE G. Bayramoğlu, “Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu”, JEPS, c. 35, sy. 2, ss. 226–236, 2023, doi: 10.7240/jeps.1233332.
ISNAD Bayramoğlu, Gülay. “Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması Ve Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences 35/2 (Temmuz 2023), 226-236. https://doi.org/10.7240/jeps.1233332.
JAMA Bayramoğlu G. Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu. JEPS. 2023;35:226–236.
MLA Bayramoğlu, Gülay. “Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması Ve Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences, c. 35, sy. 2, 2023, ss. 226-3, doi:10.7240/jeps.1233332.
Vancouver Bayramoğlu G. Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu. JEPS. 2023;35(2):226-3.