Araştırma Makalesi
BibTex RIS Kaynak Göster

Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect

Yıl 2025, Cilt: 37 Sayı: 4, 404 - 414, 23.12.2025
https://doi.org/10.7240/jeps.1746720

Öz

Nanoparticles synthesized through biological processes are utilized in cancer treatment, drug delivery systems, nanosensors, photoimaging, cosmetics, and medical applications. Extracts from Nigella sativa seeds have been traditionally used for centuries to treat numerous diseases. Current studies focus on the antidiabetic, anticancer, antibacterial, antifungal, anti-inflammatory, antiulcer, immune-enhancing, and hypoglycemic effects of these seeds. In this study, it was aimed to synthesize titanium nanoparticles by green synthesis method using N. sativa seeds and to investigate the effects of these nanoparticles on cytotoxicity, antibacterial, and wound healing activity. N. sativa seeds were extracted with distilled water and titanium nanoparticles were synthesized using titanium (IV) dioxide precursor. UV-VIS, SEM-EDX, FTIR, and XRD were used to characterize the nanoparticles. Then, the cytotoxic effects of the nanoparticles on HT-29 cells and wound healing effects on BJ and Caco-2 cells were investigated. Also, antibacterial activities were tested using Escherichia coli and Staphylococcus aureus. The cytotoxicity analysis demonstrated that cell viability decreased in a time- and dose-dependent manner. The lowest IC50 value was obtained at 72 hours with a value of 61.10±3.33 µg/mL. In the scratch assay, it was determined that 2.5 and 5 µg/mL titanium nanoparticle application showed no positive effect on wound healing. The MIC value for both bacteria was calculated as 0.125 mg/mL, and the inhibition zone diameters were measured as 10.81 mm against E. coli and 10.52 mm against S. aureus bacteria. This study has shown that titanium nanoparticles produced using N. sativa have potential for use in health and biomedical fields.

Destekleyen Kurum

This study was supported by the Manisa Celal Bayar University Scientific Research Projects Coordination Unit (Project Number: 2023-051).

Proje Numarası

2023-051

Teşekkür

This study was supported by the Manisa Celal Bayar University Scientific Research Projects Coordination Unit (Project Number: 2023-051).

Kaynakça

  • Hussain, S., Rukhsar, A., Iqbal, M., ul Ain, Q., Fiaz, J., Akhtar, N., ... & Khalid, H. (2024). Phytochemical profile, nutritional and medicinal value of Nigella sativa. Biocatalysis and Agricultural Biotechnology, 103324.
  • Balyan, P., Shinde, S., & Ali, A. (2021). Potential activities of nanoparticles synthesized from Nigella sativa L. and its phytoconstituents: An overview. Journal of Phytonanotechnology and Pharmaceutical Sciences, 1-9.
  • Sallehuddin, N., Nordin, A., BtHjIdrus, R., & Fauzi, M. B. (2020). Nigella sativa and its active compound, thymoquinone, accelerate wound healing in an in vivo animal model: A comprehensive review. International Journal of Environmental Research and Public Health, 17(11), 4160.
  • Ciesielska-Figlon, K., Wojciechowicz, K., Wardowska, A., & Lisowska, K. A. (2023). The immunomodulatory effect of Nigella sativa. Antioxidants, 12(7), 1340.
  • Ojueromi, O. O., Oboh, G., &Ademosun, A. O. (2022). Black seed (Nigella sativa): a favourable alternative therapy for inflammatory and immune system disorders. Inflammopharmacology, 30(5), 1623-1643.
  • Koşar, İ., & Özel, A. (2018). Çörekotu (Nigella sativa L.) çeşit ve popülasyonlarının karakterizasyonu: I. tarımsal özellikler. Harran Tarım ve Gıda Bilimleri Dergisi, 533-543.
  • Yalçın, N. (2019). Çörek otu (Nigella satia L.) esansiyel yağının ratlarda bağırsak üzerine etkisi. Afyon Kocatepe Üniversitesi Sağlık Bilimleri Enstitüsü Fizyoloji Anabilim Dalı Yüksek Lisans Tezi, 1-54.
  • Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik sistemli nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 93-108.
  • Üçüncü Tunca, E. (2015). Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyonu. Ordu Üniversitesi, Bilim Teknik Dergisi, 23-34.
  • Vijayaram, S., Razafindralambo, H., Sun, Y. Z., Vasantharaj, S., Ghafarifarsani, H., Hoseinifar, S. H., &Raeeszadeh, M. (2024). Applications of green synthesized metal nanoparticles—a review. Biological Trace Element Research, 202(1), 360-386.
  • Soni, V., Raizada, P., Singh, P., Cuong, H. N., Saini, A., Saini, R. V., ... & Nguyen, V. H. (2021). Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: a review. Environmental Research, 202, 111622.
  • Jassal, P. S., Kaur, D., Prasad, R., & Singh, J. (2022). Green synthesis of titanium dioxide nanoparticles: Development and applications. Journal of Agriculture and Food Research, 10, 100361.
  • Dobrucka, R. (2021). Facile synthesis of trimetallic nanoparticles Au/CuO/ZnO using Vitex agnus-castus extract and their activity in degradation of organic dyes. International Journal of Environmental Analytical Chemistry, 101:14, 2046-2057.
  • Subhapriya, S., &Gomathipriya, P. J. M. P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial pathogenesis, 116, 215-220.
  • Lim, F. P. K., Bongosia, L. F. G., Yao, N. B. N., Santiago, L. A. (2014). Cytotoxic activity of the phenolic extract of virgin coconut oil on human hepatocarcinoma cells (HepG2). International Food Research Journal, 21(2).
  • Karakaş, D., Ari, F., & Ulukaya, E. (2017). The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turkish Journal of Biology, 41(6), 919-925.
  • Ruffo, M., Parisi, O. I., Dattilo, M., Patitucci, F., Malivindi, R., Pezzi, V., ... &Puoci, F. (2022). Synthesis and evaluation of wound healing properties of hydro-diab hydrogel loaded with green-synthetized AGNPS: in vitro and in ex vivo studies. Drug Delivery and Translational Research, 12(8), 1881-1894.
  • Yılmaz Öztürk, B., Yenice Gürsu, B., Dağ, İ., (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89: 208-219.
  • Chakravarty, P., Deka, H., & Chowdhury, D. (2023). Anthracene removal potential of green synthesized titanium dioxide nanoparticles (TiO2-NPs) and Alcaligenes faecalis HP8 from contaminated soil. Chemosphere, 321, 138102.
  • Dadwal, A., Kumari, P., Nike, T., Chauhan, V., Kumar, R., Kaushal, D., ... & Kumar, M. (2024). Green synthesis of titanium dioxide nanoparticles by utilizing Marchantia polymorpha and their application in methylene blue dye removal. Catalysis Letters, 1-14.
  • Purkait, P. K., Majumder, S., Roy, S., Maitra, S., Das, G. C., & Chaudhuri, M. G. (2023). Enhanced heterogeneous photocatalytic degradation of florasulam in aqueous media using green synth esized TiO2 nanoparticle under UV light irradiation. Inorganic Chemistry Communications, 155, 111017.
  • Dülger, B., Özkan, G., Angı, O. S., & Özkan, G. (2024). Green synthesis of TiO2 nanoparticles using Aloe vera extract as catalyst support material and studies of their catalytic activity in dehydrogenation of ethylenediamine bisborane. International Journal of Hydrogen Energy.
  • Shekhar, S., Singh, S., Gandhi, N., Gautam, S., & Sharma, B. (2023). Green chemistry based benign approach for the synthesis of titanium oxide nanoparticles using extracts of Azadirachta indica. Cleaner Engineering and Technology, 13, 100607.
  • Pavithra, S., Bessy, T. C., Bindhu, M. R., Venkatesan, R., Parimaladevi, R., Alam, M. M., ... & Umadevi, M. (2023). Photocatalytic and photovoltaic applications of green synthesized titanium oxide (TiO2) nanoparticles by Calotropis gigantea extract. Journal of Alloys and Compounds, 960, 170638.
  • Caliskan, G., Mutaf, T., Agba, H. C., & Elibol, M. (2022). Green synthesis and characterization of titanium nanoparticles using microalga, Phaeodactylum tricornutum. Geomicrobiology Journal,39(1), 83-96.
  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851.
  • Aslam, M., Abdullah, A. Z., &Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. Journal of Industrial and Engineering Chemistry, 98, 1-16.
  • Gupta, M. K., Vishwakrama, A. K., Srivastava, G., & Pratap, S. (2017). Study of titanium nanoparticles in biological system using different techniques. Nanotechnology.
  • Amooaghaie, R., Saeri, M. R., & Azizi, M. (2015). Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology and Environmental Safety, 120, 400-408.
  • Chand, K., Jiao, C., Lakhan, M. N., Shah, A. H., Kumar, V., Fouad, D. E., ... & Cao, D. (2021). Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella sativa seed extract. Chemical Physics Letters, 763, 138218.
  • Rohini, B., Akther, T., Waseem, M., Khan, J., Kashif, M., & Hemalatha, S. (2019). AgNPs from Nigella sativa control breast cancer: An in vitro study. Journal of Environmental Pathology, Toxicology and Oncology, 38(2).
  • Widdatallah, M. O., Mohamed, A. A., Alrasheid, A. A., Widatallah, H. A., Yassin, L. F., Eltilib, S. H., & Ahmed, S. A. R. (2020). Green synthesis of silver nanoparticles using Nigella sativa seeds and evaluation of their antibacterial activity. Advances in Nanoparticles, 9(2), 41-48.
  • Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M., & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8(1), 82-88.
  • Samhitha, S. S., Raghavendra, G., Quezada, C., & Bindu, P. H. (2022). Green synthesized TiO2 nanoparticles for anticancer applications: mini review. Materials Today: Proceedings, 54, 765-770.
  • Al-Karagoly, H., Rhyaf, A., Naji, H., Albukhaty, S., AlMalki, F. A., Alyamani, A. A., ... &Aloufi, S. (2022). Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Processing and Synthesis, 11(1), 254-265.
  • Usmani, A., Mishra, A., Jafri, A., Arshad, M., & Siddiqui, M. A. (2019). Green synthesis of silver nanocomposites of Nigella sativa seeds extract for hepatocellular carcinoma. Integral University, Faculty of Pharmacy, India, 1-10.
  • Palanisamy CP, Alugoju P, Jayaraman S, Poompradub S. Nigella sativa L. seed extracts promote wound healing progress by activating VEGF and PDGF signaling pathways: an in vitro and in silico study. F1000Research, 12, 436.
  • Kumar, M., Kaushik, D., Kumar, A., Gupta, P., Proestos, C., Oz, E., ... & Oz, F. (2023). Green synthesis of copper nanoparticles from Nigella sativa seed extract and evaluation of their antibacterial and antiobesity activity. International Journal of Food Science & Technology.

Nigella Sativa Ekstraktı ve Titanyum (IV) Dioksit Prekürsörü Kullanılarak Biyomühendislikle Üretilmiş Titanyum Nanopartiküller: Sitotoksik Aktivite, Yara İyileştirme Özelliği ve Antibakteriyel Etki

Yıl 2025, Cilt: 37 Sayı: 4, 404 - 414, 23.12.2025
https://doi.org/10.7240/jeps.1746720

Öz

Biyolojik süreçlerle sentezlenen nanopartiküller kanser tedavisi, ilaç dağıtım sistemleri, nanosensörler, foto görüntüleme, kozmetik ve tıbbi uygulamalarda kullanılmaktadır. Nigella sativa tohumlarından elde edilen ekstraktlar geleneksel olarak yüzyıllardır çok sayıda hastalığın tedavisinde kullanılmaktadır. Güncel çalışmalar bu tohumların antidiyabetik, antikanser, antibakteriyel, antifungal, anti-inflamatuar, antiülser, bağışıklık arttırıcı ve hipoglisemik etkilerine odaklanmaktadır. Bu çalışmada, N. sativa tohumları kullanılarak yeşil sentez yöntemiyle titanyum nanopartiküllerin sentezlenmesi ve bu nanopartiküllerin sitotoksisite, yara iyileşmesi ve antibakteriyel aktivite üzerindeki etkilerinin araştırılması amaçlanmıştır. N. sativa tohumları distile su ile ekstrakte edilmiş ve titanyum (IV) dioksit prekürsörü kullanılarak titanyum nanopartiküller sentezlenmiştir. Bu nanopartiküller UV-VIS, SEM-EDX, FTIR ve XRD kullanılarak karakterize edilmiştir. Ardından, nanopartiküllerin HT-29 kolon kanseri hücreleri üzerindeki sitotoksik etkileri ve BJ dermal fibroblast hücreleri ve Caco-2 kolon kanseri hücreleri üzerindeki yara iyileştirici etkileri araştırılmıştır. Ayrıca, antibakteriyel aktiviteler Escherichia coli ve Staphylococcus aureus kullanılarak test edilmiştir. Sitotoksisite analizi, hücre canlılığının zamana ve doza bağlı olarak azaldığını göstermiştir. En etkili IC50 değeri 61.10±3.33 µg/mL değeri ile 72. saatte elde edilmiştir. 2.5 ve 5 µg/mL titanyum nanopartikül uygulamasının yara iyileşmesi üzerinde herhangi bir etki göstermediği belirlenmiştir. Her iki bakteri için MIC değeri 0.125 mg/mL olarak hesaplanmış ve inhibisyon zon çapları E. coli bakterisine karşı 10.81 mm, S. aureus bakterisine karşı ise 10.52 mm olarak ölçülmüştür. Bu çalışma, N. sativa kullanılarak üretilen titanyum nanopartiküllerin sağlık ve biyomedikal alanlarda kullanım potansiyeline sahip olduğunu göstermiştir.

Proje Numarası

2023-051

Kaynakça

  • Hussain, S., Rukhsar, A., Iqbal, M., ul Ain, Q., Fiaz, J., Akhtar, N., ... & Khalid, H. (2024). Phytochemical profile, nutritional and medicinal value of Nigella sativa. Biocatalysis and Agricultural Biotechnology, 103324.
  • Balyan, P., Shinde, S., & Ali, A. (2021). Potential activities of nanoparticles synthesized from Nigella sativa L. and its phytoconstituents: An overview. Journal of Phytonanotechnology and Pharmaceutical Sciences, 1-9.
  • Sallehuddin, N., Nordin, A., BtHjIdrus, R., & Fauzi, M. B. (2020). Nigella sativa and its active compound, thymoquinone, accelerate wound healing in an in vivo animal model: A comprehensive review. International Journal of Environmental Research and Public Health, 17(11), 4160.
  • Ciesielska-Figlon, K., Wojciechowicz, K., Wardowska, A., & Lisowska, K. A. (2023). The immunomodulatory effect of Nigella sativa. Antioxidants, 12(7), 1340.
  • Ojueromi, O. O., Oboh, G., &Ademosun, A. O. (2022). Black seed (Nigella sativa): a favourable alternative therapy for inflammatory and immune system disorders. Inflammopharmacology, 30(5), 1623-1643.
  • Koşar, İ., & Özel, A. (2018). Çörekotu (Nigella sativa L.) çeşit ve popülasyonlarının karakterizasyonu: I. tarımsal özellikler. Harran Tarım ve Gıda Bilimleri Dergisi, 533-543.
  • Yalçın, N. (2019). Çörek otu (Nigella satia L.) esansiyel yağının ratlarda bağırsak üzerine etkisi. Afyon Kocatepe Üniversitesi Sağlık Bilimleri Enstitüsü Fizyoloji Anabilim Dalı Yüksek Lisans Tezi, 1-54.
  • Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik sistemli nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 93-108.
  • Üçüncü Tunca, E. (2015). Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyonu. Ordu Üniversitesi, Bilim Teknik Dergisi, 23-34.
  • Vijayaram, S., Razafindralambo, H., Sun, Y. Z., Vasantharaj, S., Ghafarifarsani, H., Hoseinifar, S. H., &Raeeszadeh, M. (2024). Applications of green synthesized metal nanoparticles—a review. Biological Trace Element Research, 202(1), 360-386.
  • Soni, V., Raizada, P., Singh, P., Cuong, H. N., Saini, A., Saini, R. V., ... & Nguyen, V. H. (2021). Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: a review. Environmental Research, 202, 111622.
  • Jassal, P. S., Kaur, D., Prasad, R., & Singh, J. (2022). Green synthesis of titanium dioxide nanoparticles: Development and applications. Journal of Agriculture and Food Research, 10, 100361.
  • Dobrucka, R. (2021). Facile synthesis of trimetallic nanoparticles Au/CuO/ZnO using Vitex agnus-castus extract and their activity in degradation of organic dyes. International Journal of Environmental Analytical Chemistry, 101:14, 2046-2057.
  • Subhapriya, S., &Gomathipriya, P. J. M. P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial pathogenesis, 116, 215-220.
  • Lim, F. P. K., Bongosia, L. F. G., Yao, N. B. N., Santiago, L. A. (2014). Cytotoxic activity of the phenolic extract of virgin coconut oil on human hepatocarcinoma cells (HepG2). International Food Research Journal, 21(2).
  • Karakaş, D., Ari, F., & Ulukaya, E. (2017). The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turkish Journal of Biology, 41(6), 919-925.
  • Ruffo, M., Parisi, O. I., Dattilo, M., Patitucci, F., Malivindi, R., Pezzi, V., ... &Puoci, F. (2022). Synthesis and evaluation of wound healing properties of hydro-diab hydrogel loaded with green-synthetized AGNPS: in vitro and in ex vivo studies. Drug Delivery and Translational Research, 12(8), 1881-1894.
  • Yılmaz Öztürk, B., Yenice Gürsu, B., Dağ, İ., (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89: 208-219.
  • Chakravarty, P., Deka, H., & Chowdhury, D. (2023). Anthracene removal potential of green synthesized titanium dioxide nanoparticles (TiO2-NPs) and Alcaligenes faecalis HP8 from contaminated soil. Chemosphere, 321, 138102.
  • Dadwal, A., Kumari, P., Nike, T., Chauhan, V., Kumar, R., Kaushal, D., ... & Kumar, M. (2024). Green synthesis of titanium dioxide nanoparticles by utilizing Marchantia polymorpha and their application in methylene blue dye removal. Catalysis Letters, 1-14.
  • Purkait, P. K., Majumder, S., Roy, S., Maitra, S., Das, G. C., & Chaudhuri, M. G. (2023). Enhanced heterogeneous photocatalytic degradation of florasulam in aqueous media using green synth esized TiO2 nanoparticle under UV light irradiation. Inorganic Chemistry Communications, 155, 111017.
  • Dülger, B., Özkan, G., Angı, O. S., & Özkan, G. (2024). Green synthesis of TiO2 nanoparticles using Aloe vera extract as catalyst support material and studies of their catalytic activity in dehydrogenation of ethylenediamine bisborane. International Journal of Hydrogen Energy.
  • Shekhar, S., Singh, S., Gandhi, N., Gautam, S., & Sharma, B. (2023). Green chemistry based benign approach for the synthesis of titanium oxide nanoparticles using extracts of Azadirachta indica. Cleaner Engineering and Technology, 13, 100607.
  • Pavithra, S., Bessy, T. C., Bindhu, M. R., Venkatesan, R., Parimaladevi, R., Alam, M. M., ... & Umadevi, M. (2023). Photocatalytic and photovoltaic applications of green synthesized titanium oxide (TiO2) nanoparticles by Calotropis gigantea extract. Journal of Alloys and Compounds, 960, 170638.
  • Caliskan, G., Mutaf, T., Agba, H. C., & Elibol, M. (2022). Green synthesis and characterization of titanium nanoparticles using microalga, Phaeodactylum tricornutum. Geomicrobiology Journal,39(1), 83-96.
  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851.
  • Aslam, M., Abdullah, A. Z., &Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. Journal of Industrial and Engineering Chemistry, 98, 1-16.
  • Gupta, M. K., Vishwakrama, A. K., Srivastava, G., & Pratap, S. (2017). Study of titanium nanoparticles in biological system using different techniques. Nanotechnology.
  • Amooaghaie, R., Saeri, M. R., & Azizi, M. (2015). Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology and Environmental Safety, 120, 400-408.
  • Chand, K., Jiao, C., Lakhan, M. N., Shah, A. H., Kumar, V., Fouad, D. E., ... & Cao, D. (2021). Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella sativa seed extract. Chemical Physics Letters, 763, 138218.
  • Rohini, B., Akther, T., Waseem, M., Khan, J., Kashif, M., & Hemalatha, S. (2019). AgNPs from Nigella sativa control breast cancer: An in vitro study. Journal of Environmental Pathology, Toxicology and Oncology, 38(2).
  • Widdatallah, M. O., Mohamed, A. A., Alrasheid, A. A., Widatallah, H. A., Yassin, L. F., Eltilib, S. H., & Ahmed, S. A. R. (2020). Green synthesis of silver nanoparticles using Nigella sativa seeds and evaluation of their antibacterial activity. Advances in Nanoparticles, 9(2), 41-48.
  • Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M., & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8(1), 82-88.
  • Samhitha, S. S., Raghavendra, G., Quezada, C., & Bindu, P. H. (2022). Green synthesized TiO2 nanoparticles for anticancer applications: mini review. Materials Today: Proceedings, 54, 765-770.
  • Al-Karagoly, H., Rhyaf, A., Naji, H., Albukhaty, S., AlMalki, F. A., Alyamani, A. A., ... &Aloufi, S. (2022). Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Processing and Synthesis, 11(1), 254-265.
  • Usmani, A., Mishra, A., Jafri, A., Arshad, M., & Siddiqui, M. A. (2019). Green synthesis of silver nanocomposites of Nigella sativa seeds extract for hepatocellular carcinoma. Integral University, Faculty of Pharmacy, India, 1-10.
  • Palanisamy CP, Alugoju P, Jayaraman S, Poompradub S. Nigella sativa L. seed extracts promote wound healing progress by activating VEGF and PDGF signaling pathways: an in vitro and in silico study. F1000Research, 12, 436.
  • Kumar, M., Kaushik, D., Kumar, A., Gupta, P., Proestos, C., Oz, E., ... & Oz, F. (2023). Green synthesis of copper nanoparticles from Nigella sativa seed extract and evaluation of their antibacterial and antiobesity activity. International Journal of Food Science & Technology.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomühendislik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gülçin Uzlucan 0009-0007-7098-3216

Ayşegül İnam 0000-0002-9411-1232

Furkan Ozan Çöven 0000-0001-7696-3418

Tülay Öncü Öner 0000-0001-6180-5409

Proje Numarası 2023-051
Gönderilme Tarihi 21 Temmuz 2025
Kabul Tarihi 29 Kasım 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 4

Kaynak Göster

APA Uzlucan, G., İnam, A., Çöven, F. O., Öncü Öner, T. (2025). Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect. International Journal of Advances in Engineering and Pure Sciences, 37(4), 404-414. https://doi.org/10.7240/jeps.1746720
AMA Uzlucan G, İnam A, Çöven FO, Öncü Öner T. Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect. JEPS. Aralık 2025;37(4):404-414. doi:10.7240/jeps.1746720
Chicago Uzlucan, Gülçin, Ayşegül İnam, Furkan Ozan Çöven, ve Tülay Öncü Öner. “Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 4 (Aralık 2025): 404-14. https://doi.org/10.7240/jeps.1746720.
EndNote Uzlucan G, İnam A, Çöven FO, Öncü Öner T (01 Aralık 2025) Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect. International Journal of Advances in Engineering and Pure Sciences 37 4 404–414.
IEEE G. Uzlucan, A. İnam, F. O. Çöven, ve T. Öncü Öner, “Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect”, JEPS, c. 37, sy. 4, ss. 404–414, 2025, doi: 10.7240/jeps.1746720.
ISNAD Uzlucan, Gülçin vd. “Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect”. International Journal of Advances in Engineering and Pure Sciences 37/4 (Aralık2025), 404-414. https://doi.org/10.7240/jeps.1746720.
JAMA Uzlucan G, İnam A, Çöven FO, Öncü Öner T. Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect. JEPS. 2025;37:404–414.
MLA Uzlucan, Gülçin vd. “Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 4, 2025, ss. 404-1, doi:10.7240/jeps.1746720.
Vancouver Uzlucan G, İnam A, Çöven FO, Öncü Öner T. Plant Extract-Mediated Titanium Nanoparticles Using Nigella Sativa Extract and Titanium (IV) Dioxide Precursor: Cytotoxic Activity, Wound Healing Activity and Antibacterial Effect. JEPS. 2025;37(4):404-1.