Araştırma Makalesi
BibTex RIS Kaynak Göster

𝐑 𝟑 de k- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri

Yıl 2020, , 239 - 250, 01.09.2020
https://doi.org/10.7240/jeps.629843

Öz

k- bilinmeyenli reel kaysayılı tüm G- invaryant rasyonel fonksiyonların kümesi 𝑅(x1,x2,…,xk) 𝐺 ile gösterilir. Üç boyutlu ℝ3 Öklid uzayında benzerlik dönüşümleri grubu G = S(3) olmak üzere, bu çalışmada ℝ3 de verilen ve k vektörden oluşan 𝐴 = {𝑥1, 𝑥2 ,… , 𝑥𝑘} kümesinin rasyonel S(3)-invaryantlarını tam olarak belirleyebilmek için G grubuna göre invaryant rasyonel fonksiyonlar cismi olan R(x1,x2,…,xk) G cisminin üreteç kümesi ifade edilmiştir. Böylece A kümesinin herhangi bir S(3) invaryantı bu üreteç kümenin elemanlarının bir fonksiyonu olarak ifade edilebilecektir. 

Kaynakça

  • Khadjiev Dj. (1967), Some Questions in the Theory of Vector Invariants, Math. USSR- Sbornic, 1 (3): 383-396.
  • Grosshans F. (1973), Obsevable Groups and Hilbert’s Problem, American Journal of Math., 95:229-253.
  • Klein F. (1893), A comperative review of recent researches in geometry ( Dr. M.W. Haskell, trans.) Bulletin of the New York Mathematical Society, 2 : 215-249.
  • Weyl H. (1946), The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl., Princeton University Press, Princeton.
  • Khadjiev Dj. (1988), An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent ( in Russian ).
  • Incesu M. (2008), The Complete System of Point Invariants in the Similarity Geometry, Phd. Thesis, Karadeniz Technical University, Trabzon.
  • Sagiroglu Y. (2011), ”The Equivalence Problem For Parametric Curves In One-Dimensional Affine Space”, International Mathematical Forum, 6: 177-184.
  • Sagiroglu Y. (2015), ”Equi-affine differential invariants of a pair of curves”, TWMS Journal of Pure and Applied Mathematics, 6 : 238-245.
  • Sagiroglu Y., Peksen O. (2010), ”The Equivalence Of Centro-Equiaffine Curves”, Turkish ¨ Journal of Mathematics, 34: 95-104.
  • Oren İ. (2016), ”Complete System of Invariants of Subspaces of Lorentzian Space”, Iranian Journal of Science and Technology Transaction A-Science, 40(3): 1-8.
  • Khadjiev D., Oren İ., Peksen O. (2013) , ”Generating systems of differential invariants and the ¨ theorem on existence for curves in the pseudo-Euclidean geometry”, Turkish Journal of Mathematics, 37: 80-94.
  • Karataş M. (2005), Noktalar Sisteminin Öklid İnvaryantları, Y. Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Incesu M., Gürsoy O. (2016) , “On Similarity Invariant Rational Functions For k Vector Variables and Their Generators in R2”, Modelling and Application & Theory, 1 (1) , 37-53.
  • Incesu M., Gürsoy O. (2017), “LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, 5 (3), 70-84.
  • Incesu M., Gürsoy O. (2017) “Düzlemsel Bezier Eğrilerinin S(2)- Denklik Şartları” Muş Alparslan University Journal of Science, 5 (2), 471 - 477.
  • İncesu M., (2017) , “THE SIMILARITY ORBITS IN R3” Modelling and Application & Theory, 2 (1), 28-37.
  • Nikulin V. And Shafarevich I.R. (1994),Geometries and Groups,Springer, NewYork.
  • Ören, İ.(2018) On the control invariants of planar Bezier curves for the groups M (2) and SM (2). Turkish Journal of Mathematics and Computer Science, 10, 74-81.

The generators of the field R(x1,x2,…,xk) S(3) for k- vectors given in 𝑅 3

Yıl 2020, , 239 - 250, 01.09.2020
https://doi.org/10.7240/jeps.629843

Öz

The field of the G-invariant rational functions with k- variables 𝑥1, 𝑥2,… , 𝑥𝑘 is denoted by𝑅(x1,x2,…,xk)𝐺. In this paper the generator set of the field of G-invariant rational functions denoted by R(x1,x2,…,xk)G is obtained to determine completely all S(3)-invariants of the set 𝐴 = {𝑥1 , 𝑥2 ,…, 𝑥𝑘} consisted of k- vector variables in ℝ3 where G = S(3) which is the similarity transformations' group in 3 dimensional Euclidean space ℝ3. So any S(3)-invariant of the set A can be stated by the functions of the generator set of the field R(x1,x2,…,xk) G.

Kaynakça

  • Khadjiev Dj. (1967), Some Questions in the Theory of Vector Invariants, Math. USSR- Sbornic, 1 (3): 383-396.
  • Grosshans F. (1973), Obsevable Groups and Hilbert’s Problem, American Journal of Math., 95:229-253.
  • Klein F. (1893), A comperative review of recent researches in geometry ( Dr. M.W. Haskell, trans.) Bulletin of the New York Mathematical Society, 2 : 215-249.
  • Weyl H. (1946), The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl., Princeton University Press, Princeton.
  • Khadjiev Dj. (1988), An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent ( in Russian ).
  • Incesu M. (2008), The Complete System of Point Invariants in the Similarity Geometry, Phd. Thesis, Karadeniz Technical University, Trabzon.
  • Sagiroglu Y. (2011), ”The Equivalence Problem For Parametric Curves In One-Dimensional Affine Space”, International Mathematical Forum, 6: 177-184.
  • Sagiroglu Y. (2015), ”Equi-affine differential invariants of a pair of curves”, TWMS Journal of Pure and Applied Mathematics, 6 : 238-245.
  • Sagiroglu Y., Peksen O. (2010), ”The Equivalence Of Centro-Equiaffine Curves”, Turkish ¨ Journal of Mathematics, 34: 95-104.
  • Oren İ. (2016), ”Complete System of Invariants of Subspaces of Lorentzian Space”, Iranian Journal of Science and Technology Transaction A-Science, 40(3): 1-8.
  • Khadjiev D., Oren İ., Peksen O. (2013) , ”Generating systems of differential invariants and the ¨ theorem on existence for curves in the pseudo-Euclidean geometry”, Turkish Journal of Mathematics, 37: 80-94.
  • Karataş M. (2005), Noktalar Sisteminin Öklid İnvaryantları, Y. Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Incesu M., Gürsoy O. (2016) , “On Similarity Invariant Rational Functions For k Vector Variables and Their Generators in R2”, Modelling and Application & Theory, 1 (1) , 37-53.
  • Incesu M., Gürsoy O. (2017), “LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, 5 (3), 70-84.
  • Incesu M., Gürsoy O. (2017) “Düzlemsel Bezier Eğrilerinin S(2)- Denklik Şartları” Muş Alparslan University Journal of Science, 5 (2), 471 - 477.
  • İncesu M., (2017) , “THE SIMILARITY ORBITS IN R3” Modelling and Application & Theory, 2 (1), 28-37.
  • Nikulin V. And Shafarevich I.R. (1994),Geometries and Groups,Springer, NewYork.
  • Ören, İ.(2018) On the control invariants of planar Bezier curves for the groups M (2) and SM (2). Turkish Journal of Mathematics and Computer Science, 10, 74-81.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Muhsin İncesu 0000-0003-2515-9627

Yayımlanma Tarihi 1 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA İncesu, M. (2020). 𝐑 𝟑 de k- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri. International Journal of Advances in Engineering and Pure Sciences, 32(3), 239-250. https://doi.org/10.7240/jeps.629843
AMA İncesu M. 𝐑 𝟑 de k- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri. JEPS. Eylül 2020;32(3):239-250. doi:10.7240/jeps.629843
Chicago İncesu, Muhsin. “𝐑 𝟑 De K- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri”. International Journal of Advances in Engineering and Pure Sciences 32, sy. 3 (Eylül 2020): 239-50. https://doi.org/10.7240/jeps.629843.
EndNote İncesu M (01 Eylül 2020) 𝐑 𝟑 de k- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri. International Journal of Advances in Engineering and Pure Sciences 32 3 239–250.
IEEE M. İncesu, “𝐑 𝟑 de k- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri”, JEPS, c. 32, sy. 3, ss. 239–250, 2020, doi: 10.7240/jeps.629843.
ISNAD İncesu, Muhsin. “𝐑 𝟑 De K- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri”. International Journal of Advances in Engineering and Pure Sciences 32/3 (Eylül 2020), 239-250. https://doi.org/10.7240/jeps.629843.
JAMA İncesu M. 𝐑 𝟑 de k- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri. JEPS. 2020;32:239–250.
MLA İncesu, Muhsin. “𝐑 𝟑 De K- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri”. International Journal of Advances in Engineering and Pure Sciences, c. 32, sy. 3, 2020, ss. 239-50, doi:10.7240/jeps.629843.
Vancouver İncesu M. 𝐑 𝟑 de k- Vektör İçin R(x1,x2,…,xk) S(3) Cisminin Üreteçleri. JEPS. 2020;32(3):239-50.

Cited By

R3 de Açık B-Spline Eğrilerinin G-Benzerlikler
Muş Alparslan Üniversitesi Fen Bilimleri Dergisi
Muhsin İNCESU
https://doi.org/10.18586/msufbd.807153