Sıfır Değerlikli Demir Nanoparçacık (nZVI) ile Sulu Çözeltilerden Metil Oranj Giderimi
Yıl 2021,
, 415 - 421, 01.09.2021
Esra Erken
Öz
Bu çalışmada, laboratuvar koşullarında sentezlenen sıfır değerlikli demir nanoparçacıkların metil oranj (MO) boya çözeltisi ve gerçek tekstil atıksuyu numunesi üzerindeki renk giderim verimleri incelenmiştir. Deneysel çalışmalar neticesinde optimum nZVI konstantrasyonu 100 ppm olarak belirlenmiş, bu konsantrasyondaki nZVI ile elde edilen renk giderim verimleri 100 ppm MO çözeltisi için %92, gerçek teksil atıksuyu için ise %96 olarak tespit edilmiştir. Gerçek tekstil atık suyu ile yürütülen çalışmalarda herhangi bir pH ayarlamasına ihtiyaç duyulmadan bu kadar yüksek renk gideriminin sağlanabilmesi nZVI teknolojisinin düşük pH ihtiyacı gösteren Fenton/Foto-Fenton proseslerine kıyasla önemli bir avantaj sağladığını göstermektedir. Renk giderimi için konvansiyonel olarak uygulanan koagülasyon prosesleri ile kıyaslandığında da nZVI teknolojisi çamur oluşumu bakımından önemli bir avantaj sağlamaktadır.
Destekleyen Kurum
Marmara Üniversitesi BAPKO Birimi
Proje Numarası
FEN-C-YLP-110915-0440
Teşekkür
Bu çalışma Marmara Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi FEN-C-YLP-110915-0440 projesinin finansal desteği ile gerçekleştirilmiştir. Deneysel çalışmaların gerçekleştirilmesindeki katkılarından dolayı Elif Tekev’e teşekkürlerimi sunarım.
Kaynakça
- [1] Baban, A., Yediler, A. and Ciliz, N.K. (2010). Integrated water management and CP implementation for wool and textile blend processes. Clean-Soil Air Water, 38, 84-90.
- [2] Soloman, P.A., Basha, C.A., Velan, M., Ramamurthi, V., Koteeswaran, K. and Balasubramanian, N. (2009). Electrochemical Degradation of Remazol Black B Dye Effluent. Clean-Soil Air Water, 37, 889-900.
- [3] Sponza, D., Işık, M. and Atalay, H. (2000). İndigo boyar maddelerinin anaerobik arıtılabilirliklerinin incelenmesi. DEÜ Mühendislik Fakültesi Fen Mühendislik Dergisi 2.
- [4] Kaykioğlu, G. and Debi̇k, E. (2006). Anaerobi̇k aritim prosesleri̇ i̇le teksti̇l atiksularindan renk gi̇deri̇mi. Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi, 4, 59-68.
- [5] Gomez, V., Larrechi, M.S. and Callao, M.P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69, 1151-1158.
- [6] Forgacs, E., Cserhati, T. and Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30, 953-971.
- [7] Suteu, D., Zaharia, C., Bilba, D., Muresan, A., Muresan, R. and Popescu, A. (2009). Decolorization wastewaters from the textile industry – physical methods, chemical methods. Industria Textila, 60, 254-263.
- [8] Zaharia, C., Suteu, D., Muresan, A., Muresan, R. and Popescu, A. (2009). Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 8, 1359-1369.
- [9] Seesuriyachan, P., Takenaka, S., Kuntiya, A., Klayraung, S., Murakmi, S. and Aoki, K. (2007). Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Research, 41, 985-992.
- [10] Hao, O.J., Kim, H. and Chang, P.C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30, 449-505.
- [11] Dutta, K., Mukhopadhyay, S., Bhattacharjee, S. and Chaudhuri, B. (2001). Chemical oxidation of methylene blue using a Fenton-like reaction. J. Hazard. Mater., 84, 57-71.
- [12] Allègre, C., Moulin, P., Maisseu, M. and Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15-34.
- [13] Uzal, N. (2007). Recovery and reuse of indigo dyeing wastewater using membrane technology. ODTÜ, Ankara.
- [14] Hilal, N.M. (2011). Treatment of Reactive Dyeing Wastewater by Different Advanced Oxidation Processes. Der Chemica Sinica, 2, 262-273.
- [15] Erdim, E., Badireddy, A.R. and Wiesner, M.R. (2015). Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination. Journal of Hazardous Materials, 283, 80-85.
- [16] Fan, J., Guo, Y., Wang, J. and Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904-910.
- [17] Chen, J.W., Xiu, Z.M., Lowry, G.V. and Alvarez, P.J.J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995-2001.
- [18] Sohn, K., Kang, S.W., Ahn S., Woo, M. and Yang, S.K. (2006). Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation, Environ. Sci. Technol., 40, 5514–5519.
- [19] Shi, Z., Nurmi, J.T. and Tratnyek, P.G. (2011). Effects of Nano Zero- valent iron on Oxidation- Reduction Potential. Environ. Sci. Technol., 45, 1586-1592.