Araştırma Makalesi
BibTex RIS Kaynak Göster

Trabzon Bölgesinden İzole Edilen İncir Ağacı Latekslerinin İnvazif Kandidiyazis Etkenlerine Karşı Antifungal Aktivitesinin ve Eser Element Düzeylerinin İncelenmesi

Yıl 2021, , 499 - 504, 01.09.2021
https://doi.org/10.7240/jeps.933913

Öz

Kandidiyazis, morbidite ve mortaliteye neden olan önemli bir halk sağlığı sorunudur. Hayatı tehdit eden sistemik mikozlara neden olan antimikrobiyal dirençli mantarların sayısındaki artış, yeni antifungal ajanlara olan ihtiyacı doğurmuştur. Bitkisel ilaçlar bu amaçla yüzyıllardır kullanılmaktadır. İncir ağacı lateksinin antifungal etkisi önceki çalışmalarda rapor edilmiş, buna ek olarak çinko gibi bazı eser elementlerin de antifungal etkileri çeşitli çalışmalarla ortaya konmuştur. Çalışmamızda, incir ağacı lateksinin C. albicans, C. glabrata, C. tropicalis ve C. krusei'ye karşı in vitro antifungal aktivitesinin belirlenmesi ve içeriğindeki eser elementlerin ortaya konarak, bu eser elementlerin potansiyel antifungal etkilerinin incelenmesi amaçlandı. İncir ağacı lateks numuneleri, Temmuz 2019'da Trabzon ilindeki dört farklı incir ağacından elde edilmiştir. Latekslerin standart Candida kökenlerine karşı antifungal etkisini araştırmak için mikrodilüsyon tekniği uygulandı ve İndüktif Eşleşmiş Plazma Atomik Emisyon Spektroskopisi (ICP-OES) kullanılarak eser element seviyesi tespit edildi. İncir ağacı latekslerinde C. albicans ve C. tropicalis için 0.5 konsantrasyonda, C. krusei ve C.glabrata için ise 0.125 konsantrasyonda en güçlü antifungal aktiviteye ulaştığı saptandı. Eser element analizine göre incir ağacı lateksinde en yüksek konsantrasyonda bulunan elementler sırasıyla magnzeyum, kalsiyum ve fosfor olarak saptandı. Selenyum, aluminyum, kurşun ve nikel seviyeleri ise ölçülemeyecek kadar düşük olarak kaydedildi. Çalışmamıza göre incir ağacı lateksinin Candida türlerine karşı antifungal potansiyeli olduğu görülmüş ve aktivitenin lateksin içerdiği yüksek magnezyum seviyesinden kaynaklanıyor olabileceği düşünülmüştür. Ancak incir ağacı lateksinin terapötik etkilerinin ortaya konulması için daha fazla çalışmaya ihtiyaç vardır.

Kaynakça

  • [1] Pappas, P. G., Kauffman, C. A., Andes, D. R., et al. (2016). Clinical practice guideline for the management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1–e50.
  • [2] Mazu, T. K., Bricker, B. A., Flores-Rozas, H., Ablordeppey, S. Y. (2016). The mechanistic targets of antifungal agents: An overview. Mini Reviews in Medicinal Chemistry, 16(7), 555-578.
  • [3] Zhang, L., Dou, X. W., Zhang, C., Logrieco, A. F., Yang, M. H. (2018). A review of current methods for analysis of Mycotoxins in herbal medicines. Toxins (Basel), 10(2), 65.
  • [4] McIntyre, E., Saliba, A. J., Wiener, K. K., Sarris, J. (2016). Herbal medicine use behaviour in Australian adults who experience anxiety: a descriptive study. BMC Complementary and Alternative Medicine, 16, 60.
  • [5] Nadeem, M., Zeb, A. (2018). Impact of maturity on phenolic composition and antioxidant activity of medicinally ımportant leaves of Ficus carica L. Physiology and Molecular Biology of Plants., 24(5), 881-887.
  • [6] Hemmatzadeh, F., Fatemi, A., Amini, F. (2003). Therapeutic effects of fig tree latex on bovine Papillomatosis. Journal of Veterinary Medicine B, Infectious Diseases and Veterinary Public Health, 50(10), 473-476.
  • [7] Aref, H. L., Salah, K.B., Chaumont, J. P., Fekih, A., Aouni, M., Said, K. (2010). In vitro antimicrobial activity of four Ficus Carica Latex fractions against resistant human pathogens (antimicrobial activity of Ficus Carica Latex). Pakistan Journal of Pharmaceutical Sciences, 23(1), 53-58.
  • [8] Raskovic, B., Lazic, J., Polovic, N. (2016). Characterisation of general proteolytic, milk clotting and antifungal activity of Ficus Carica Latex during fruit ripening. Journal of the Science of Food Agriculture, 96(2), 576-582.
  • [9] Nizamani, P., Afridi, H. I., Kazi, T. G., Talpur, F. N., Baig, J. A. (2019). Essential trace elemental levels (zinc, iron and copper) in the biological samples of smoker referent and pulmonary tuberculosis patients. Toxicology Reports, 6, 1230-1239.
  • [10] Li, Y., Sun, L., Lu, C., Gong, Y., Li, M., Sun, S. (2018). Promising antifungal targets against Candida Albicans based on ıon homeostasis. Frontiers in Cellullar and Infection Microbiology, 8, 286.
  • [11] Aggarwal, K., Jain, V. K., Sangwan, S. (2003). Comparative study of Ketoconazole sersus selenium sulphide shampoo in pityriasis versicolor. Indian Journal of Dermatology, Venereology and Leprology, 69(2), 86-87.
  • [12] Savi, G. D., Bortoluzzi, A. J., Scussel, V.M. (2013). Antifungal properties of zinc‐compounds against toxigenic Fungi and Mycotoxin. International Journal of Food Science and Technology, 48, 1834-1840.
  • [13] Hana, R., Alzahrani, H. R., Kumakli, H., Ampiah, E., Mehari, T., Thornton, A. J., Babyak, C. M., Fakayode, S. O. (2017). Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values. Arabian Journal of Chemistry, 10(7), 906-913.
  • [14] Eğil, E., Duman, C., Ünlü, Ö., Demirci, M., Altan Sallı, G., Özdal Zincir, Ö., Katiboğlu, A. B. (2020). Siyah Havuç, Vişne ve Nar Konsantrelerinin Streptococcus Mutans'ın Biyofilm Oluşturma Özelliği Üzerine Etkisinin Değerlendirilmesi. Türkiye Klinikleri Journal of Dental Sciences, doi: 10.5336/dentalsci.2020-77374.
  • [15] Kılınç, E., Buturak, B., Ateş Alkan, F. (2020). Level of trace elements in serum and toenail samples of patients with Onychocryptosis (ingrown toenail) and Onychomycosis. Journal of Trace Elements in Medicine and Biology, 61, 126509.
  • [16] Duzgun Ergun, D., Dursun, S., Ergun, S., Ozcelik, D. (2021). The Association Between Trace Elements and Osmolality in Plasma and Aqueous Humor Fluid in Diabetic Rabbits. Biological Trace Element Research, doi. 10.1007/s12011-020-02538-5.
  • [17] Ahmed, N. M. Antifungal and Antibacterial activity of Fig Fruit Latexes from two Ficus species Plants. 3rd Scientific Conference - College of Veterinary Medicine -University of Tikrit 2,3 May 2016.
  • [18] Karimiyan, A., Najafzadeh, H., Ghorbanpour, M., Hekmati-Moghaddam, S. H. (2015). Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan Journal of Research in Medical Sciences, 17(10), e2179.
  • [19] Kong, F., Wang, J., Han, R. et al. (2020). Antifungal activity of magnesium oxide nanoparticles: effect on the growth and key virulence factors of Candida albicans. Mycopathologia, 185, 485-494.

Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province

Yıl 2021, , 499 - 504, 01.09.2021
https://doi.org/10.7240/jeps.933913

Öz

Candidiasis is a major health concern causing both morbidity and mortality. The increasing prevalence of antimicrobial-resistant fungi associated with life-threatening systemic mycoses, led a constant need for new antifungal agents. Herbal medicines have been tried for this purpose for centuries. The antifungal effect of fig tree latex has been reported and some trace elements such as zinc were associated with antifungal effects. The aim of this study was to determine the trace element content and in-vitro antifungal activity of fig tree latex sample against C. albicans, C. glabrata, C. tropicalis and C. Krusei. Fig tree latex samples were obtained from four different fig tree at Trabzon province in July 2019. The broth microdilution technique was performed to investigate antifungal activity against standard Candida strains and trace elements level were detected with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) analyzer. The most powerful antifungal activity was reached at a concentration of 0.5 for C. albicans and C. tropicalis, and at a concentration of 0.125 for C. krusei and C. glabrata in fig tree latex. According to trace element analysis, magnesium had the highest level, followed by calcium and phosphorus. Selenium, aluminium, lead and nickel levels were too low to be measured. As a conclusion, fig tree latex has an antifungal potential against Candida species and this may be caused by the high level of magnesium that it contains, however more studies are needed to understand the therapeutic effects of fig tree latex.

Kaynakça

  • [1] Pappas, P. G., Kauffman, C. A., Andes, D. R., et al. (2016). Clinical practice guideline for the management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1–e50.
  • [2] Mazu, T. K., Bricker, B. A., Flores-Rozas, H., Ablordeppey, S. Y. (2016). The mechanistic targets of antifungal agents: An overview. Mini Reviews in Medicinal Chemistry, 16(7), 555-578.
  • [3] Zhang, L., Dou, X. W., Zhang, C., Logrieco, A. F., Yang, M. H. (2018). A review of current methods for analysis of Mycotoxins in herbal medicines. Toxins (Basel), 10(2), 65.
  • [4] McIntyre, E., Saliba, A. J., Wiener, K. K., Sarris, J. (2016). Herbal medicine use behaviour in Australian adults who experience anxiety: a descriptive study. BMC Complementary and Alternative Medicine, 16, 60.
  • [5] Nadeem, M., Zeb, A. (2018). Impact of maturity on phenolic composition and antioxidant activity of medicinally ımportant leaves of Ficus carica L. Physiology and Molecular Biology of Plants., 24(5), 881-887.
  • [6] Hemmatzadeh, F., Fatemi, A., Amini, F. (2003). Therapeutic effects of fig tree latex on bovine Papillomatosis. Journal of Veterinary Medicine B, Infectious Diseases and Veterinary Public Health, 50(10), 473-476.
  • [7] Aref, H. L., Salah, K.B., Chaumont, J. P., Fekih, A., Aouni, M., Said, K. (2010). In vitro antimicrobial activity of four Ficus Carica Latex fractions against resistant human pathogens (antimicrobial activity of Ficus Carica Latex). Pakistan Journal of Pharmaceutical Sciences, 23(1), 53-58.
  • [8] Raskovic, B., Lazic, J., Polovic, N. (2016). Characterisation of general proteolytic, milk clotting and antifungal activity of Ficus Carica Latex during fruit ripening. Journal of the Science of Food Agriculture, 96(2), 576-582.
  • [9] Nizamani, P., Afridi, H. I., Kazi, T. G., Talpur, F. N., Baig, J. A. (2019). Essential trace elemental levels (zinc, iron and copper) in the biological samples of smoker referent and pulmonary tuberculosis patients. Toxicology Reports, 6, 1230-1239.
  • [10] Li, Y., Sun, L., Lu, C., Gong, Y., Li, M., Sun, S. (2018). Promising antifungal targets against Candida Albicans based on ıon homeostasis. Frontiers in Cellullar and Infection Microbiology, 8, 286.
  • [11] Aggarwal, K., Jain, V. K., Sangwan, S. (2003). Comparative study of Ketoconazole sersus selenium sulphide shampoo in pityriasis versicolor. Indian Journal of Dermatology, Venereology and Leprology, 69(2), 86-87.
  • [12] Savi, G. D., Bortoluzzi, A. J., Scussel, V.M. (2013). Antifungal properties of zinc‐compounds against toxigenic Fungi and Mycotoxin. International Journal of Food Science and Technology, 48, 1834-1840.
  • [13] Hana, R., Alzahrani, H. R., Kumakli, H., Ampiah, E., Mehari, T., Thornton, A. J., Babyak, C. M., Fakayode, S. O. (2017). Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values. Arabian Journal of Chemistry, 10(7), 906-913.
  • [14] Eğil, E., Duman, C., Ünlü, Ö., Demirci, M., Altan Sallı, G., Özdal Zincir, Ö., Katiboğlu, A. B. (2020). Siyah Havuç, Vişne ve Nar Konsantrelerinin Streptococcus Mutans'ın Biyofilm Oluşturma Özelliği Üzerine Etkisinin Değerlendirilmesi. Türkiye Klinikleri Journal of Dental Sciences, doi: 10.5336/dentalsci.2020-77374.
  • [15] Kılınç, E., Buturak, B., Ateş Alkan, F. (2020). Level of trace elements in serum and toenail samples of patients with Onychocryptosis (ingrown toenail) and Onychomycosis. Journal of Trace Elements in Medicine and Biology, 61, 126509.
  • [16] Duzgun Ergun, D., Dursun, S., Ergun, S., Ozcelik, D. (2021). The Association Between Trace Elements and Osmolality in Plasma and Aqueous Humor Fluid in Diabetic Rabbits. Biological Trace Element Research, doi. 10.1007/s12011-020-02538-5.
  • [17] Ahmed, N. M. Antifungal and Antibacterial activity of Fig Fruit Latexes from two Ficus species Plants. 3rd Scientific Conference - College of Veterinary Medicine -University of Tikrit 2,3 May 2016.
  • [18] Karimiyan, A., Najafzadeh, H., Ghorbanpour, M., Hekmati-Moghaddam, S. H. (2015). Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan Journal of Research in Medical Sciences, 17(10), e2179.
  • [19] Kong, F., Wang, J., Han, R. et al. (2020). Antifungal activity of magnesium oxide nanoparticles: effect on the growth and key virulence factors of Candida albicans. Mycopathologia, 185, 485-494.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Özge Ünlü 0000-0002-5411-5925

Fatma Ateş Alkan 0000-0001-6429-9572

Nural Pastacı Özsobacı 0000-0002-9133-5695

Sedanur Özyüksel 0000-0001-7593-595X

Mehmet Demirci 0000-0001-9670-2426

Yayımlanma Tarihi 1 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ünlü, Ö., Ateş Alkan, F., Pastacı Özsobacı, N., Özyüksel, S., vd. (2021). Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province. International Journal of Advances in Engineering and Pure Sciences, 33(3), 499-504. https://doi.org/10.7240/jeps.933913
AMA Ünlü Ö, Ateş Alkan F, Pastacı Özsobacı N, Özyüksel S, Demirci M. Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province. JEPS. Eylül 2021;33(3):499-504. doi:10.7240/jeps.933913
Chicago Ünlü, Özge, Fatma Ateş Alkan, Nural Pastacı Özsobacı, Sedanur Özyüksel, ve Mehmet Demirci. “Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province”. International Journal of Advances in Engineering and Pure Sciences 33, sy. 3 (Eylül 2021): 499-504. https://doi.org/10.7240/jeps.933913.
EndNote Ünlü Ö, Ateş Alkan F, Pastacı Özsobacı N, Özyüksel S, Demirci M (01 Eylül 2021) Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province. International Journal of Advances in Engineering and Pure Sciences 33 3 499–504.
IEEE Ö. Ünlü, F. Ateş Alkan, N. Pastacı Özsobacı, S. Özyüksel, ve M. Demirci, “Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province”, JEPS, c. 33, sy. 3, ss. 499–504, 2021, doi: 10.7240/jeps.933913.
ISNAD Ünlü, Özge vd. “Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province”. International Journal of Advances in Engineering and Pure Sciences 33/3 (Eylül 2021), 499-504. https://doi.org/10.7240/jeps.933913.
JAMA Ünlü Ö, Ateş Alkan F, Pastacı Özsobacı N, Özyüksel S, Demirci M. Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province. JEPS. 2021;33:499–504.
MLA Ünlü, Özge vd. “Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province”. International Journal of Advances in Engineering and Pure Sciences, c. 33, sy. 3, 2021, ss. 499-04, doi:10.7240/jeps.933913.
Vancouver Ünlü Ö, Ateş Alkan F, Pastacı Özsobacı N, Özyüksel S, Demirci M. Determination of Antifungal Activity Against Invasive Candidiasis Agents and Trace Element Content of Fig Tree Latex Samples Obtained From Trabzon Province. JEPS. 2021;33(3):499-504.