Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri ve Hamilton Analizleri

Yıl 2019, Cilt: 31 Sayı: 2, 155 - 162, 30.06.2019
https://doi.org/10.7240/jeps.518757

Öz

İkinci mertebeden türevlere bağımlı Lagrange
fonksiyonları’nı yeni koordinat tanımlayarak ve/veya Lagrange çarpımı
kullanarak birinci mertebeden türevlere bağımlı hale getirmek mümkündür.
İndirgeme olarak tanımlayacağımız bu süreç için literatürde verilen 3 yöntem
karşılaştırılmıştır. Bu yöntemler ışığında, yozlaşmama şartını sağlayan ikinci
derece Lagrange fonksiyonlarının Hamilton analizi, Dirac-Bergmann metodu
kullanılarak başarılmıştır. Tüm bu teorik inşalara örnek olarak Chern-Simon
teorisi bünyesindeki yozlaşmama şartını sağlayan Chiral salınacı örneği detaylı
olarak incelenmiştir.

Kaynakça

  • KAYNAKLARMarsden, J. E. ve Ratiu, T. (1998). Introduction to mechanics ve symmetry: a basic exposition of classical mechanical systems, Springer-Verlag New York.
  • Dirac, P.A.M. (1964). Lectures on quantum mechanics, Belfer Graduate School of Science, Monograph Series, Yeshiva University, New york.
  • Dirac, P. A. (1958). Generalized hamiltonian dynamics. In Proceedings of the Royal Society of London A: Mathematical, Physical ve Engineering Sciences, 246(1246), 326-332.
  • P. G. Bergmann, (1956), Quantization of general covariant field theories, Helv. Phys. Acta, Suppl. 4, 79.
  • Gotay, M. J. ve Nester, J. M. (1979). Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theorem. In Annales de l’IHP Physique théorique, 30(2) ,129-142.
  • Gotay, M. J. ve Nester, J. M. (1980). Generalized constraint algorithm ve special presymplectic manifolds. Geom. Meth. in Math. Phys., Lecture Notes in Mathematics, (775), 78-104.
  • Gotay, M. J. Nester, J. M., ve Hinds, G. (1978). Presymplectic manifolds and the Dirac Bergmann theory of constraints. J. Math. Phys., 19(11), 2388-2399
  • M. Ostrogradski, (1850), Mem. Acad. St. Petersburg VI, 4 385.
  • Çağatay Uçgun F., Esen O. ve Gümral H., (2018), Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians, J. Math. Phys., 59(1).
  • Pons J. M., (1989) Ostrogradski's Theorem for Higher-Order Singular Lagrangians, Lett. Math. Phys. 17(3), 181-189.
  • Rashid, M. S. ve Khalil, S. S. (1996). Hamiltonian description of higher order lagrangians. Int. J. of Mod. Phys. A, 11(25), 4551-4559.
  • Schmidt, H. J. (1994). Stability ve Hamiltonian formulation of higher derivative theories. Phys. Rev. D, 49(12), 6354.
  • Schmidt, H. J. (1995). An alternate Hamiltonian formulation of fourth-order theories ve its application to cosmology. e-print arXiv:gr-qc/9501019.
  • Esen O. ve Guha P. (2018), On the geometry of the Schmidt-Legendre transformation, J. of Geom. Mec., 10 (3), 251-291.
  • J. Lukierski, P. Stichel ve W. Zakrzewski, (1997) Galilean invariant (2 + 1) dimensional models with a Chern-Simons-like term ve D = 2 noncommutative geometry, Ann. Phys. 260, 224-249.
  • Cruz M., Gómez-Cortés R., Molgado A. ve Rojas E., (2016), Hamiltonian analysis for linearly acceleration-dependent Lagrangians, J. Math. Phys., 57, 062903
Yıl 2019, Cilt: 31 Sayı: 2, 155 - 162, 30.06.2019
https://doi.org/10.7240/jeps.518757

Öz

Kaynakça

  • KAYNAKLARMarsden, J. E. ve Ratiu, T. (1998). Introduction to mechanics ve symmetry: a basic exposition of classical mechanical systems, Springer-Verlag New York.
  • Dirac, P.A.M. (1964). Lectures on quantum mechanics, Belfer Graduate School of Science, Monograph Series, Yeshiva University, New york.
  • Dirac, P. A. (1958). Generalized hamiltonian dynamics. In Proceedings of the Royal Society of London A: Mathematical, Physical ve Engineering Sciences, 246(1246), 326-332.
  • P. G. Bergmann, (1956), Quantization of general covariant field theories, Helv. Phys. Acta, Suppl. 4, 79.
  • Gotay, M. J. ve Nester, J. M. (1979). Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theorem. In Annales de l’IHP Physique théorique, 30(2) ,129-142.
  • Gotay, M. J. ve Nester, J. M. (1980). Generalized constraint algorithm ve special presymplectic manifolds. Geom. Meth. in Math. Phys., Lecture Notes in Mathematics, (775), 78-104.
  • Gotay, M. J. Nester, J. M., ve Hinds, G. (1978). Presymplectic manifolds and the Dirac Bergmann theory of constraints. J. Math. Phys., 19(11), 2388-2399
  • M. Ostrogradski, (1850), Mem. Acad. St. Petersburg VI, 4 385.
  • Çağatay Uçgun F., Esen O. ve Gümral H., (2018), Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians, J. Math. Phys., 59(1).
  • Pons J. M., (1989) Ostrogradski's Theorem for Higher-Order Singular Lagrangians, Lett. Math. Phys. 17(3), 181-189.
  • Rashid, M. S. ve Khalil, S. S. (1996). Hamiltonian description of higher order lagrangians. Int. J. of Mod. Phys. A, 11(25), 4551-4559.
  • Schmidt, H. J. (1994). Stability ve Hamiltonian formulation of higher derivative theories. Phys. Rev. D, 49(12), 6354.
  • Schmidt, H. J. (1995). An alternate Hamiltonian formulation of fourth-order theories ve its application to cosmology. e-print arXiv:gr-qc/9501019.
  • Esen O. ve Guha P. (2018), On the geometry of the Schmidt-Legendre transformation, J. of Geom. Mec., 10 (3), 251-291.
  • J. Lukierski, P. Stichel ve W. Zakrzewski, (1997) Galilean invariant (2 + 1) dimensional models with a Chern-Simons-like term ve D = 2 noncommutative geometry, Ann. Phys. 260, 224-249.
  • Cruz M., Gómez-Cortés R., Molgado A. ve Rojas E., (2016), Hamiltonian analysis for linearly acceleration-dependent Lagrangians, J. Math. Phys., 57, 062903
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Filiz Çağatay Ucgun 0000-0003-3845-4334

Yayımlanma Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 31 Sayı: 2

Kaynak Göster

APA Çağatay Ucgun, F. (2019). Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri ve Hamilton Analizleri. International Journal of Advances in Engineering and Pure Sciences, 31(2), 155-162. https://doi.org/10.7240/jeps.518757
AMA Çağatay Ucgun F. Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri ve Hamilton Analizleri. JEPS. Haziran 2019;31(2):155-162. doi:10.7240/jeps.518757
Chicago Çağatay Ucgun, Filiz. “Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri Ve Hamilton Analizleri”. International Journal of Advances in Engineering and Pure Sciences 31, sy. 2 (Haziran 2019): 155-62. https://doi.org/10.7240/jeps.518757.
EndNote Çağatay Ucgun F (01 Haziran 2019) Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri ve Hamilton Analizleri. International Journal of Advances in Engineering and Pure Sciences 31 2 155–162.
IEEE F. Çağatay Ucgun, “Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri ve Hamilton Analizleri”, JEPS, c. 31, sy. 2, ss. 155–162, 2019, doi: 10.7240/jeps.518757.
ISNAD Çağatay Ucgun, Filiz. “Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri Ve Hamilton Analizleri”. International Journal of Advances in Engineering and Pure Sciences 31/2 (Haziran 2019), 155-162. https://doi.org/10.7240/jeps.518757.
JAMA Çağatay Ucgun F. Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri ve Hamilton Analizleri. JEPS. 2019;31:155–162.
MLA Çağatay Ucgun, Filiz. “Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri Ve Hamilton Analizleri”. International Journal of Advances in Engineering and Pure Sciences, c. 31, sy. 2, 2019, ss. 155-62, doi:10.7240/jeps.518757.
Vancouver Çağatay Ucgun F. Yüksek Mertebeden Euler-Lagrange Denklemlerinin İndirgemeleri ve Hamilton Analizleri. JEPS. 2019;31(2):155-62.