Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies' Stock Price

Yıl 2025, Cilt: 37 Sayı: UYIK 2024 Special Issue, 30 - 39
https://doi.org/10.7240/jeps.1504048

Öz

In this study, the validity of imputation techniques for deep learning methods in time series analysis is investigated using datasets based on daily closing data in the stock market. Datasets of daily closing stock prices for Turkish Airlines, Deutsche Lufthansa AG, and Delta Airlines, as well as a simulated dataset, are used. LSTM, GRU, RNN, and Transformer models, which are deep learning models, are employed. The original dataset and datasets with 5%, 15% and 25% missing data are analyzed imputing linear, spline, Stineman, mean and random imputation techniques. The results show that model performance varies depending on the imputation technique and the rate of missing data. GRU and Transformer models are favored for their robustness and excellent performance. For handling missing data, using spline and Stineman imputations is advisable to maintain high model accuracy. This study emphasizes the usability of various imputation techniques and deep learning models in time series analysis. It assesses model performance using both MAPE and RMSE to gain a comprehensive understanding of predictive accuracy and reliability, aiming to guide future research by comparing these methods.

Etik Beyan

Disclaimer: The data utilized in this study are publicly accessible real-world datasets. This research focused on evaluating the performance of various deep learning methods and imputation techniques using these datasets. The study does not provide any commentary or recommendations regarding the buying, selling, or other actions related to companies' stocks. Therefore, we bear no responsibility for such actions. As the data used are publicly available, no permissions were required for this study.

Destekleyen Kurum

Eskişehir Technical University

Proje Numarası

23ADP172

Teşekkür

This study was supported by Eskişehir Technical University Scientific Research Project Commission under grant no: 23ADP172. This study was produced from Kürşat Atmaca's Master's Thesis, which was supervised by Dr. İsmail Yenilmez. An earlier version of this study was presented at UYİK-2024

Kaynakça

  • Chatfield, C. (2004). The Analysis of Time Series: An Introduction. Chapman and Hall/CRC.
  • Yenilmez, I., & Kantar, YM., 2019. An Analysis of Export Data with Panel Tobit Model. ICONDATA19, e-ISBN: 978-605-031-662-9. pp.92-97.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30, 5998-6008.
  • Çalık, A. S., Yenilmez, İ., & Sevinçtekin, Ö. (2022). Comparison of Box-Jenkins and Artificial Neural Networks methods: Demand forecast for ceramic sanitary ware. Proceeding Book of EGE 7th International Conference on Applied Sciences, December 24-25, İzmir, Türkiye (pp.1024-29), ISBN: 978-605-72197-9-4.
  • Mugenzi, F. & Yenilmez, İ. (2023). Forecasting for GDP Per Capita Using Multiplier Perceptron and Gated Recurrent Unit. Proceeding Book of Akdeniz 10th International Conference on Applied Sciences, November 2-5, KYRENIA (pp.318-327), ISBN: 978-625-6830-49-3.
  • Yenilmez, I., & Mugenzi, F. (2023). Estimation of conventional and innovative models for Rwanda's GDP per capita: A comparative analysis of artificial neural networks and Box-Jenkins methodologies. Scientific African, 22, e01902. https://doi.org/10.1016/j.sciaf.2023.e01902.
  • Yenilmez, İ. & Akçay, E. K. (2023). Performance of Particle Swarm Optimization and Genetic Algorithm for Tuning of k-NN Hyperparameters. Proceeding Book of Akdeniz 10th International Conference on Applied Sciences, November 2-5, KYRENIA (pp.328-338), ISBN: 978-625-6830-49-3
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. John Wiley & Sons.
  • Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall/CRC.
  • Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). Comparison of ARIMA, LSTM, and GRU models for time series forecasting: Evidence from Bitcoin price data. Journal of Financial Data Science, 1(1), 45-60.
  • Ridwan, M., Sadik, K., & Afendi, F. M. (2023). Evaluating the effectiveness of ARIMA and GRU models in high-frequency stock price forecasting: A case study of HIMBARA bank stocks. Journal of Financial Forecasting, 5(2), 87-102.
  • Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks. Future Internet, 15(8), 255. https://doi.org/10.3390/fi15080255.
  • Ahmed, S., Nielsen, I.E., Tripathi, A. et al. Transformers in Time-Series Analysis: A Tutorial. Circuits Syst Signal Process 42, 7433–7466 (2023). https://doi.org/10.1007/s00034-023-02454-8.
  • Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022). Transformers in Time Series: A Survey.
  • Fang, C., & Wang, C. (2020). Time Series Data Imputation:A Survey on Deep Learning Approaches.ArXiv https://arxiv.org/abs/2011.11347
  • Yenilmez, İ. (2024). Imputation methods effect on the goodness of fit of the statistical model. In Proceedings of the 9th International Conference on Business, Management and Economics. Vienna, Austria. ISBN 978-609-485-514-6.
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7
  • Stineman, R. W. (1980). A consistently well-behaved method of interpolation. Creative Computing, 6(7), 54-57.
  • Donders, A. R. T., van der Heijden, G. J., Stijnen, T., & Moons, K. G. (2006). Review: A gentle introduction to imputation of missing values. Journal of Clinical Epidemiology, 59(10), 1087-1091. https://doi.org/10.1016/j.jclinepi.2006.01.014
  • Yenilmez, İ., & Kantar, Y. M. (2023). New exponentiated generalized censored regression models: Monte Carlo simulation and application. Concurrency and Computation: Practice and Experience, 35(1), e7436. https://doi.org/10.1002/cpe.7436
  • Atmaca, K., & Yenilmez, İ. (2024). RNNs and Transformer Model in case of Incomplete Time Series. Conference paper presented at the Fifth International Congress of Applied Statistics (UYIK-2024), İstanbul, Türkiye

Tamamlanmış Zaman Serisi Verilerinde Derin Öğrenme Modellerinin Performansı: Bir Simülasyon Çalışması ve Önde Gelen Havayolu Şirketlerinin Hisse Senedi Fiyatlarına Uygulama

Yıl 2025, Cilt: 37 Sayı: UYIK 2024 Special Issue, 30 - 39
https://doi.org/10.7240/jeps.1504048

Öz

Bu çalışmada, zaman serisi analizinde derin öğrenme yöntemleri için imputasyon tekniklerinin geçerliliği, hisse senedi piyasasındaki günlük kapanış verilerine dayalı veri kümeleri kullanılarak araştırılmıştır. Türk Hava Yolları, Deutsche Lufthansa AG ve Delta Airlines'ın günlük kapanış hisse senedi fiyatlarının yanı sıra simüle edilmiş bir veri kümesi kullanılmıştır. Derin öğrenme modelleri olan LSTM, GRU, RNN ve Transformer modelleri kullanılmıştır. Orijinal veri kümesi ve %5, %15 ve %25 eksik gözleme sahip veri kümeleri, Doğrusal, Spline, Stineman, Ortalama ve Rastgele atama teknikleri ile doldurularak analiz edilmiştir. Sonuçlar, model performansının atama tekniğine ve eksik veri oranına bağlı olarak değiştiğini göstermektedir. GRU ve Transformer modelleri, dayanıklılıkları ve mükemmel performansları nedeniyle tercih edilmektedir. Eksik verilerle başa çıkmak için spline ve Stineman atama tekniklerinin kullanılması, yüksek model doğruluğunu korumak açısından önerilmektedir. Bu çalışma, zaman serisi analizinde çeşitli atama tekniklerinin ve derin öğrenme modellerinin kullanılabilirliğini vurgulamaktadır. Araştırma model performansı, tahmin doğruluğu ve güvenilirliği hakkında kapsamlı bir anlayış elde etmek için hem MAPE hem de RMSE kullanarak değerlendirmeyi ve bu yöntemleri karşılaştırarak gelecekteki araştırmalara rehberlik etmeyi amaçlamaktadır.

Destekleyen Kurum

Eskişehir Technical University

Proje Numarası

23ADP172

Kaynakça

  • Chatfield, C. (2004). The Analysis of Time Series: An Introduction. Chapman and Hall/CRC.
  • Yenilmez, I., & Kantar, YM., 2019. An Analysis of Export Data with Panel Tobit Model. ICONDATA19, e-ISBN: 978-605-031-662-9. pp.92-97.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30, 5998-6008.
  • Çalık, A. S., Yenilmez, İ., & Sevinçtekin, Ö. (2022). Comparison of Box-Jenkins and Artificial Neural Networks methods: Demand forecast for ceramic sanitary ware. Proceeding Book of EGE 7th International Conference on Applied Sciences, December 24-25, İzmir, Türkiye (pp.1024-29), ISBN: 978-605-72197-9-4.
  • Mugenzi, F. & Yenilmez, İ. (2023). Forecasting for GDP Per Capita Using Multiplier Perceptron and Gated Recurrent Unit. Proceeding Book of Akdeniz 10th International Conference on Applied Sciences, November 2-5, KYRENIA (pp.318-327), ISBN: 978-625-6830-49-3.
  • Yenilmez, I., & Mugenzi, F. (2023). Estimation of conventional and innovative models for Rwanda's GDP per capita: A comparative analysis of artificial neural networks and Box-Jenkins methodologies. Scientific African, 22, e01902. https://doi.org/10.1016/j.sciaf.2023.e01902.
  • Yenilmez, İ. & Akçay, E. K. (2023). Performance of Particle Swarm Optimization and Genetic Algorithm for Tuning of k-NN Hyperparameters. Proceeding Book of Akdeniz 10th International Conference on Applied Sciences, November 2-5, KYRENIA (pp.328-338), ISBN: 978-625-6830-49-3
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. John Wiley & Sons.
  • Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall/CRC.
  • Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). Comparison of ARIMA, LSTM, and GRU models for time series forecasting: Evidence from Bitcoin price data. Journal of Financial Data Science, 1(1), 45-60.
  • Ridwan, M., Sadik, K., & Afendi, F. M. (2023). Evaluating the effectiveness of ARIMA and GRU models in high-frequency stock price forecasting: A case study of HIMBARA bank stocks. Journal of Financial Forecasting, 5(2), 87-102.
  • Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks. Future Internet, 15(8), 255. https://doi.org/10.3390/fi15080255.
  • Ahmed, S., Nielsen, I.E., Tripathi, A. et al. Transformers in Time-Series Analysis: A Tutorial. Circuits Syst Signal Process 42, 7433–7466 (2023). https://doi.org/10.1007/s00034-023-02454-8.
  • Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022). Transformers in Time Series: A Survey.
  • Fang, C., & Wang, C. (2020). Time Series Data Imputation:A Survey on Deep Learning Approaches.ArXiv https://arxiv.org/abs/2011.11347
  • Yenilmez, İ. (2024). Imputation methods effect on the goodness of fit of the statistical model. In Proceedings of the 9th International Conference on Business, Management and Economics. Vienna, Austria. ISBN 978-609-485-514-6.
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7
  • Stineman, R. W. (1980). A consistently well-behaved method of interpolation. Creative Computing, 6(7), 54-57.
  • Donders, A. R. T., van der Heijden, G. J., Stijnen, T., & Moons, K. G. (2006). Review: A gentle introduction to imputation of missing values. Journal of Clinical Epidemiology, 59(10), 1087-1091. https://doi.org/10.1016/j.jclinepi.2006.01.014
  • Yenilmez, İ., & Kantar, Y. M. (2023). New exponentiated generalized censored regression models: Monte Carlo simulation and application. Concurrency and Computation: Practice and Experience, 35(1), e7436. https://doi.org/10.1002/cpe.7436
  • Atmaca, K., & Yenilmez, İ. (2024). RNNs and Transformer Model in case of Incomplete Time Series. Conference paper presented at the Fifth International Congress of Applied Statistics (UYIK-2024), İstanbul, Türkiye
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hesaplamalı İstatistik, Uygulamalı İstatistik
Bölüm Araştırma Makaleleri
Yazarlar

İsmail Yenilmez 0000-0002-3357-3898

Kürşat Atmaca Bu kişi benim 0009-0005-1666-7525

Proje Numarası 23ADP172
Erken Görünüm Tarihi 9 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 25 Haziran 2024
Kabul Tarihi 20 Ağustos 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: UYIK 2024 Special Issue

Kaynak Göster

APA Yenilmez, İ., & Atmaca, K. (2025). Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price. International Journal of Advances in Engineering and Pure Sciences, 37(UYIK 2024 Special Issue), 30-39. https://doi.org/10.7240/jeps.1504048
AMA Yenilmez İ, Atmaca K. Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price. JEPS. Ocak 2025;37(UYIK 2024 Special Issue):30-39. doi:10.7240/jeps.1504048
Chicago Yenilmez, İsmail, ve Kürşat Atmaca. “Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price”. International Journal of Advances in Engineering and Pure Sciences 37, sy. UYIK 2024 Special Issue (Ocak 2025): 30-39. https://doi.org/10.7240/jeps.1504048.
EndNote Yenilmez İ, Atmaca K (01 Ocak 2025) Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price. International Journal of Advances in Engineering and Pure Sciences 37 UYIK 2024 Special Issue 30–39.
IEEE İ. Yenilmez ve K. Atmaca, “Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price”, JEPS, c. 37, sy. UYIK 2024 Special Issue, ss. 30–39, 2025, doi: 10.7240/jeps.1504048.
ISNAD Yenilmez, İsmail - Atmaca, Kürşat. “Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price”. International Journal of Advances in Engineering and Pure Sciences 37/UYIK 2024 Special Issue (Ocak 2025), 30-39. https://doi.org/10.7240/jeps.1504048.
JAMA Yenilmez İ, Atmaca K. Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price. JEPS. 2025;37:30–39.
MLA Yenilmez, İsmail ve Kürşat Atmaca. “Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. UYIK 2024 Special Issue, 2025, ss. 30-39, doi:10.7240/jeps.1504048.
Vancouver Yenilmez İ, Atmaca K. Performance of Deep Learning Models on Imputed Time Series Data: A Simulation Study and Application to Leading Airline Companies’ Stock Price. JEPS. 2025;37(UYIK 2024 Special Issue):30-9.