Araştırma Makalesi
BibTex RIS Kaynak Göster

ARTIFICIAL INTELLIGENCE-BASED IOT SECURITY MONITORING SYSTEM

Yıl 2025, Cilt: 13 Sayı: 4, 1047 - 1060, 30.12.2025
https://doi.org/10.21923/jesd.1717599

Öz

In this study, a security system was developed to detect Distributed Denial of Service (DDoS) attacks targeting networks connected to Internet of Things (IoT) devices. Due to their low processing power, limited memory capacity, and inadequate security measures, IoT devices are frequently targeted by cyber attackers. Accordingly, a detection model based on supervised learning techniques was designed to mitigate the impact of DDoS attacks, which are commonly encountered in IoT-based networks. For model training, a labeled dataset containing various types of attacks and DDoS-related traffic was utilized. During the training process, the dataset was divided into training and testing subsets, and the model’s performance was evaluated using accuracy, precision, recall, and F1-score metrics. In addition, k-fold cross-validation was applied to enhance the model’s generalization ability. The system was structured not only to work with static data but also to analyze live network traffic. DDoS attacks were successfully detected through real-time traffic analysis, and instant alerts were delivered to the user. As a result, an effective, dynamic, and AI-based detection mechanism was established against attacks targeting IoT networks.

Kaynakça

  • Anand, M. V., KiranBala, B., Srividhya, S. R., Younus, M., Rahman, M. H., 2022. Gaussian Naïve Bayes algorithm: a reliable technique involved in the assortment of the segregation in cancer. Mobile Information Systems, 2022(1), 2436946, https://doi.org/10.1155/2022/2436946.
  • Bıçakçı, S. N., 2019. Nesnelerin interneti. Takvim-i vekayi, 7(1), 24-36.
  • Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., Den Hartog, F. T., 2021. ToN_IoT: The role of heterogeneity and the need for standardization of features and attack types in IoT network intrusion data sets. IEEE Internet of Things Journal, 9(1), 485-496, doi: 10.1109/JIOT.2021.3085194.
  • Chandra, M. A., Bedi, S. S., 2021. Survey on SVM and their application in image classification. International Journal of Information Technology, 13(5), 1-11, https://doi.org/10.1007/s41870-017-0080-1.
  • DDoS attack network logs dataset, www.kaggle.com, [Online]. Available: https://www.kaggle.com/jacobvs/ddos-attack-network-logs (Erişim 28 Mayıs 2025)
  • Erfani, M., Shoeleh, F., Dadkhah, S., Kaur, B., Xiong, P., Iqbal, S., Ghorbani, A. A., 2021. A feature exploration approach for IoT attack type classification. In 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 582-588). IEEE, doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00101.
  • Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., Choo, K. K. R., Nafaa, M., 2022. FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things. Journal of Parallel and Distributed Computing, 165, 17-31, https://doi.org/10.1016/j.jpdc.2022.03.003.
  • Ghosh, A., Chakraborty, D., Law, A., 2018. Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218, https://doi.org/10.1049/trit.2018.1008.
  • Hu, J., Szymczak, S., 2023. A review on longitudinal data analysis with random forest. Briefings in bioinformatics, 24(2), bbad002, https://doi.org/10.1093/bib/bbad002.
  • Jarjis, A. H., Al Zubaidi, N. Y. S., Pehlivanoglu, M. K., 2023. Cyber Attacks Classification on Enriching IoT Datasets. EAI Endorsed Transactions on Internet of Things, 9(3). DOI:10.4108/eetiot.v9i3.3030.
  • Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., Qiu, D., 2014. Security of the Internet of Things: perspectives and challenges. Wireless networks, 20, 2481-2501, https://doi.org/10.1007/s11276-014-0761-7.
  • Kayaalp, K., 2024. Classification of medicinal plant leaves for types and diseases with hybrid deep learning methods. Information Technology and Control, 53(1), 19-36, https://doi.org/10.5755/j01.itc.53.1.34345.
  • Kurtoğlu, E., Süslü, D. P., 2024. Türkiye'de internet bağımlılığı ile ilgili yapılmış lisansüstü tezlerin incelenmesi. Bağımlılık Dergisi, 25(1), 10-22, https://doi.org/10.51982/bagimli.1246529.
  • Leevy, J. L., Hancock, J., Khoshgoftaar, T. M., Peterson, J., 2021. Detecting Information Theft Attacks in the Bot-IoT Dataset. Proceedings - 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021: 807–812. https://doi.org/10.1109/ICMLA52953.2021.00133
  • Mercan, Ö. B., Toprak, A. G., Osmanca, M. S., 2025. IoT saldırı algılaması için çok sınıflı sınıflandırma: LLM tabanlı bir yaklaşım. 2025 yılında 33. Sinyal İşleme ve İletişim Uygulamaları Konferansı (SIU) (s. 1-4). IEEE.
  • Mohanta, B. K., Jena, D., Satapathy, U., Patnaik, S., 2020. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet of Things, 11, 100227. https://doi.org/10.1016/ j.iot.2020.100227.
  • Naskath, J., Sivakamasundari, G., Begum, A. A. S., 2023. A study on different deep learning algorithms used in deep neural nets: MLP SOM and DBN. Wireless personal communications, 128(4), 2913-2936, https://doi.org/10.1016/j.envsoft.2024.105971.
  • Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P., Righetti, M., 2024. Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023). Environmental Modelling & Software, 174, 105971, https://doi.org/10.1016/j.envsoft.2024.105971.
  • Ntayagabiri, J. P., Bentaleb, Y., Ndikumagenge, J., El Makhtoum, H., 2025. A comparative analysis of supervised machine learning algorithms for IoT attack detection and classification. Journal of Computing Theories and Applications, 2(3), 395-409, https://doi.org/10.62411/jcta.11901.
  • Saba, T., Rehman, A., Sadad, T., Kolivand, H., Bahaj, S. A., 2022. Anomaly-based intrusion detection system for IoT networks through deep learning model. Computers and Electrical Engineering, https://doi.org/10.1016/J.COMPELECENG.2022.107810 99.
  • Sahu, A. K., Sharma, S., Tanveer, M., Raja, R., 2021. Internet of Things attack detection using hybrid Deep Learning Model. Computer Communications, 176, 146-154, https://doi.org/10.1016/j.comcom.2021.05.024.
  • Sanusi, T. R., Andreas, F., Sari, B. N., 2022. Implementasi Algoritma Support Vector Classifier (SVC) dengan Data Training Numerik dan Teks untuk Mengklasifikasi SMS Spam. Jurnal Ilmiah Wahana Pendidikan, 8(14), 346-354, https://doi.org/10.5281/zenodo.6994895.
  • Swarna Sugi, S. S., Ratna, S. R., 2020. Investigation of machine learning techniques in intrusion detection system for IoT network. Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, 1164–1167. https://doi.org/10.1109/ICISS49785.2020.9315900
  • Turak, Y., 2015. Nesnelerin interneti ve güvenliği. Bilişim Teknolojisi Hukuku Enstitüsü, Bilişim Hukuku Anabilim Dalı, İstanbul Bilgi Üniversitesi, 3.
  • Ullah, I., Mahmoud, Q. H., 2021. Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEE Access, 9, 103906-103926, doi: 10.1109/ACCESS.2021.3094024.
  • Woźniak, M., Siłka, J., Wieczorek, M., Alrashoud, M., 2020. Recurrent neural network model for IoT and networking malware threat detection. IEEE Transactions on Industrial Informatics, 17(8), 5583-5594, doi: 10.1109/TII.2020.3021689.
  • Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D., 2017. Learning k for knn classification. ACM Transactions on Intelligent Systems and Technology (TIST), 8(3), 1-19, https://doi.org/10.1145/2990508.

YAPAY ZEKA DESTEKLİ IOT GÜVENLİK İZLEME SİSTEMİ

Yıl 2025, Cilt: 13 Sayı: 4, 1047 - 1060, 30.12.2025
https://doi.org/10.21923/jesd.1717599

Öz

Bu çalışmada, IoT (Nesnelerin İnterneti) cihazlarının bağlı bulunduğu ağlarda gerçekleşen DDoS (Dağıtılmış Hizmet Engelleme) saldırılarının tespitine yönelik bir güvenlik sistemi geliştirilmiştir. IoT cihazlarının düşük işlem gücü, sınırlı bellek kapasitesi ve zayıf güvenlik önlemleri nedeniyle bu cihazlar, siber saldırganlar tarafından sıklıkla hedef alınmaktadır. Bu doğrultuda, IoT tabanlı ağlarda sıkça rastlanan DDoS saldırılarının etkilerini azaltmak amacıyla denetimli öğrenme yöntemleriyle çalışan bir tespit modeli tasarlanmıştır. Modelin eğitimi için farklı DDoS saldırı türlerini içeren ve DDoS trafiğiyle etiketli bir veri seti kullanılmıştır. Eğitim sürecinde veri seti eğitim ve test kümelerine ayrılmış, modelin başarımı doğruluk, kesinlik, hatırlama ve F1 skoru metrikleriyle değerlendirilmiştir. Ayrıca, k-fold çapraz doğrulama uygulanarak modelin genelleme yeteneği artırılmıştır. Sistem yalnızca statik veri ile sınırlı kalmamış, canlı ağ trafiğini de analiz edebilecek biçimde yapılandırılmıştır. Gerçek zamanlı olarak analiz edilen ağ trafiği üzerinden DDoS saldırıları başarıyla tespit edilmiş ve kullanıcıya anlık bildirimler sağlanmıştır. Böylece, IoT ağlarına yönelik saldırılara karşı etkin, dinamik ve yapay zeka tabanlı bir tespit mekanizması ortaya konulmuştur.

Kaynakça

  • Anand, M. V., KiranBala, B., Srividhya, S. R., Younus, M., Rahman, M. H., 2022. Gaussian Naïve Bayes algorithm: a reliable technique involved in the assortment of the segregation in cancer. Mobile Information Systems, 2022(1), 2436946, https://doi.org/10.1155/2022/2436946.
  • Bıçakçı, S. N., 2019. Nesnelerin interneti. Takvim-i vekayi, 7(1), 24-36.
  • Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., Den Hartog, F. T., 2021. ToN_IoT: The role of heterogeneity and the need for standardization of features and attack types in IoT network intrusion data sets. IEEE Internet of Things Journal, 9(1), 485-496, doi: 10.1109/JIOT.2021.3085194.
  • Chandra, M. A., Bedi, S. S., 2021. Survey on SVM and their application in image classification. International Journal of Information Technology, 13(5), 1-11, https://doi.org/10.1007/s41870-017-0080-1.
  • DDoS attack network logs dataset, www.kaggle.com, [Online]. Available: https://www.kaggle.com/jacobvs/ddos-attack-network-logs (Erişim 28 Mayıs 2025)
  • Erfani, M., Shoeleh, F., Dadkhah, S., Kaur, B., Xiong, P., Iqbal, S., Ghorbani, A. A., 2021. A feature exploration approach for IoT attack type classification. In 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 582-588). IEEE, doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00101.
  • Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., Choo, K. K. R., Nafaa, M., 2022. FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things. Journal of Parallel and Distributed Computing, 165, 17-31, https://doi.org/10.1016/j.jpdc.2022.03.003.
  • Ghosh, A., Chakraborty, D., Law, A., 2018. Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218, https://doi.org/10.1049/trit.2018.1008.
  • Hu, J., Szymczak, S., 2023. A review on longitudinal data analysis with random forest. Briefings in bioinformatics, 24(2), bbad002, https://doi.org/10.1093/bib/bbad002.
  • Jarjis, A. H., Al Zubaidi, N. Y. S., Pehlivanoglu, M. K., 2023. Cyber Attacks Classification on Enriching IoT Datasets. EAI Endorsed Transactions on Internet of Things, 9(3). DOI:10.4108/eetiot.v9i3.3030.
  • Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., Qiu, D., 2014. Security of the Internet of Things: perspectives and challenges. Wireless networks, 20, 2481-2501, https://doi.org/10.1007/s11276-014-0761-7.
  • Kayaalp, K., 2024. Classification of medicinal plant leaves for types and diseases with hybrid deep learning methods. Information Technology and Control, 53(1), 19-36, https://doi.org/10.5755/j01.itc.53.1.34345.
  • Kurtoğlu, E., Süslü, D. P., 2024. Türkiye'de internet bağımlılığı ile ilgili yapılmış lisansüstü tezlerin incelenmesi. Bağımlılık Dergisi, 25(1), 10-22, https://doi.org/10.51982/bagimli.1246529.
  • Leevy, J. L., Hancock, J., Khoshgoftaar, T. M., Peterson, J., 2021. Detecting Information Theft Attacks in the Bot-IoT Dataset. Proceedings - 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021: 807–812. https://doi.org/10.1109/ICMLA52953.2021.00133
  • Mercan, Ö. B., Toprak, A. G., Osmanca, M. S., 2025. IoT saldırı algılaması için çok sınıflı sınıflandırma: LLM tabanlı bir yaklaşım. 2025 yılında 33. Sinyal İşleme ve İletişim Uygulamaları Konferansı (SIU) (s. 1-4). IEEE.
  • Mohanta, B. K., Jena, D., Satapathy, U., Patnaik, S., 2020. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet of Things, 11, 100227. https://doi.org/10.1016/ j.iot.2020.100227.
  • Naskath, J., Sivakamasundari, G., Begum, A. A. S., 2023. A study on different deep learning algorithms used in deep neural nets: MLP SOM and DBN. Wireless personal communications, 128(4), 2913-2936, https://doi.org/10.1016/j.envsoft.2024.105971.
  • Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P., Righetti, M., 2024. Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023). Environmental Modelling & Software, 174, 105971, https://doi.org/10.1016/j.envsoft.2024.105971.
  • Ntayagabiri, J. P., Bentaleb, Y., Ndikumagenge, J., El Makhtoum, H., 2025. A comparative analysis of supervised machine learning algorithms for IoT attack detection and classification. Journal of Computing Theories and Applications, 2(3), 395-409, https://doi.org/10.62411/jcta.11901.
  • Saba, T., Rehman, A., Sadad, T., Kolivand, H., Bahaj, S. A., 2022. Anomaly-based intrusion detection system for IoT networks through deep learning model. Computers and Electrical Engineering, https://doi.org/10.1016/J.COMPELECENG.2022.107810 99.
  • Sahu, A. K., Sharma, S., Tanveer, M., Raja, R., 2021. Internet of Things attack detection using hybrid Deep Learning Model. Computer Communications, 176, 146-154, https://doi.org/10.1016/j.comcom.2021.05.024.
  • Sanusi, T. R., Andreas, F., Sari, B. N., 2022. Implementasi Algoritma Support Vector Classifier (SVC) dengan Data Training Numerik dan Teks untuk Mengklasifikasi SMS Spam. Jurnal Ilmiah Wahana Pendidikan, 8(14), 346-354, https://doi.org/10.5281/zenodo.6994895.
  • Swarna Sugi, S. S., Ratna, S. R., 2020. Investigation of machine learning techniques in intrusion detection system for IoT network. Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, 1164–1167. https://doi.org/10.1109/ICISS49785.2020.9315900
  • Turak, Y., 2015. Nesnelerin interneti ve güvenliği. Bilişim Teknolojisi Hukuku Enstitüsü, Bilişim Hukuku Anabilim Dalı, İstanbul Bilgi Üniversitesi, 3.
  • Ullah, I., Mahmoud, Q. H., 2021. Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEE Access, 9, 103906-103926, doi: 10.1109/ACCESS.2021.3094024.
  • Woźniak, M., Siłka, J., Wieczorek, M., Alrashoud, M., 2020. Recurrent neural network model for IoT and networking malware threat detection. IEEE Transactions on Industrial Informatics, 17(8), 5583-5594, doi: 10.1109/TII.2020.3021689.
  • Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D., 2017. Learning k for knn classification. ACM Transactions on Intelligent Systems and Technology (TIST), 8(3), 1-19, https://doi.org/10.1145/2990508.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Güvenliği Yönetimi, Pekiştirmeli Öğrenme
Bölüm Araştırma Makalesi
Yazarlar

Kıyas Kayaalp 0000-0002-6483-1124

Tuba Yilmaz Bu kişi benim 0009-0000-5587-7895

Mukaddes Karabıyık Bu kişi benim 0009-0002-5835-6651

Gönderilme Tarihi 11 Haziran 2025
Kabul Tarihi 27 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Kayaalp, K., Yilmaz, T., & Karabıyık, M. (2025). YAPAY ZEKA DESTEKLİ IOT GÜVENLİK İZLEME SİSTEMİ. Mühendislik Bilimleri ve Tasarım Dergisi, 13(4), 1047-1060. https://doi.org/10.21923/jesd.1717599