Araştırma Makalesi
BibTex RIS Kaynak Göster

SOLAR TOWER MODELING WITH THE SOLARPILOT APPLICATION IN ISPARTA

Yıl 2021, , 1302 - 1325, 20.12.2021
https://doi.org/10.21923/jesd.809392

Öz

In this study, the SolarPILOT program has been introduced to bring a different perspective to the system and system designs called Central Focused Solar Power System or Solar Tower, where studies are carried out for energy generation at high temperatures, especially by focusing on the receiver of heliostat mirrors. The most important calculation parameters of the system design for the system applicability, the heliostat area and the receiver and heliostat area settlement depending on the thermal power of the heliostat area, were examined for the province of Isparta, with a daily capacity of 10 MWt and annual energy production planning. For these processes, solar radiation model, insolation model, system design parameters, heliostat selection criteria, optimization simulation were performed. These issues are explained step by step the models used in the SolarPILOT application, together with the model description selected for calculation. The application design values were determined, and the system optimization was performed by determining the annual average DNI (Direct Normal Irradiation) data of the land to be implemented. The heliostat area required for the system was determined by field arrangement. The system calculations have been completed by determining the approximate thermal losses. The findings showed that the solar tower model is applicable for the province of Isparta and design parameters were obtained.

Kaynakça

  • SAM, 2020. Erişim Tarihi:17/07/2020. https://sam.nrel.gov/
  • NREL, 2020. Solar Power Tower Integrated Layout and Optimization Tool. Erişim Tarihi: 17/07/2020. https://www.nrel.gov/csp/solarpilot.html
  • European Commission, 2019. Photovoltaic Geographical Information System. Erişim Tarihi: 23/07/2020. https://re.jrc.ec.europa.eu/pvg_tools/en/#TMY
  • Freedictionary, 2020, Erişim Tarihi: 31/08/2020. https://encyclopedia2.thefreedictionary.com /Atmospheric+Attenuation#:~:text=a%20reduction%20in%20the%20intensity,molecules%20of%20air%20and%20aerosols.
  • NREL, 2018. SolarPILOT (Sürüm 1.3.8)[Yazılım]. Denver, USA. Tedarik edilebileceği adres: https://www.nrel.gov/csp/solarpilot-download.html
  • Lopez, J.N.M., 2016, The inuence of irradiance concentration using an asymmetric reector on the electrical performance of a PVT hybrid collector with standard monocrystalline cells, Lizbon Üniversitesi, Enerji Mühendisliği ve Yönetimi bölümü, Yüksek Lisans tezi, 66 s., Lizbon.
  • Cole, I.R., Gottschalg, R., 2015. Optical modelling for concentrating photocoltaic systems: insolation transfer variations with solar source descriptions, IET Renewable Power Generation, 9(5), 413-419.
  • Kamada, R.F., Flocchini, R.G., Gaussian Solar Flux Model, Solar Energy, 1986,36(1), 73-87.
  • System Advisor Model, Overview of NREL’s SolarPilot(TM) and SolTrace Open-source Softwate(video dosyası) Erişim Tarihi:26/07/2020 https://www.youtube.com/watch?v=wiYV2VLqr_k
  • Ramadevi, M.C., Limb Darkening, Erişim Tarihi: 25/07/2020 http://www.iucaa.in/~dipankar/ph217/contrib/limb.pdf
  • Wang, Y., Potter, D., Asselineau, C.A., Corsi, C., Wagner, M., Caliot, C., Piaud, B., Blanco, M., Kim, J.S., Pye, J., Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems, 2020, Solar Energy 195 (2020) 461–474.
  • Bird, R., Hulstrom, R.L., 1980, Direct Insolation Models, Erişim Tarihi: 26/07/2020 https://www.nrel.gov/docs/legosti/old/344.pdf
  • Hanrieder, N., Sengupta, M., Xie, Y., Wilbert, S., Paal, R.P., Modeling beam attenuation in solar tower plants using common DNI measurements, Solar Energy, 2016, 129, 244-255.
  • SAND2008-8053, 2008. Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Ulusal Laboratuvarları. Kaliforniya.
  • Bouamra, M., Merzouk, M., 2019, Cosine Efficiency Distribution with Reduced Tower Shadowing Effect in Rotating Heliostat Field, Arabian Journal for Science and Engineering, 44, 1415-1424.
  • EİGM, 2020, Erişim Tarihi: 07/09/2020. http://www.yegm.gov.tr/MyCalculator/pages/32.aspx
  • Wikipedia, Yaz Gündönümü. Erişim Tarihi: 28/07/2020. https://tr.wikipedia.org/wiki/Yaz_g%C3%BCnd%C3%B6n%C3%BCm%C3%BC
  • Sarıgül, T., 2018, Ekinoks Nedir? Erişim Tarihi:28/07/2020. http://bilimgenc.tubitak.gov.tr/makale/ekinoks-nedir
  • Wikipedia Ekinoks. Erişim Tarihi:01/09/2020. https://tr.wikipedia.org/wiki/Ekinoks
  • Wikipedia Kış Gündönümü. Erişim Tarihi:28/07/2020. https://tr.wikipedia.org/wiki/K%C4%B1%C5%9F_g%C3%BCnd%C3%B6n%C3%BCm%C3%BC
  • Ceylan. İ., Gürel. E., 2017, Güneş Enerjisi Sistemleri ve Tasarımı. Dora yayınevi, 196s, Bursa.
  • European Commission, 2020, Report on Best Available Technologies (BAT) for central receiver systems. 221766, 70.
  • Gadalla, M., Saghafifar, M., 2018, A concise overview of heliostat fields-solar thermal collectors: Current state of art and future perspective, International Journal Of Energy Research, 3145- 3163.
  • Arrif, T., Benchabane, A., Germoui, M., Bezza, B., Belaid. A., 2018. Optimisation of heliostat field layout for solar power tower systems using iterative artificial bee colony algorithm: a review and case study. Erişim Tarihi: 29/07/2020. https://www.tandfonline.com/doi/full/10.1080/01430750.2018 .1525581
  • Siala, F.M.F., Elayeb, M.E., Mathematical formulation of a graphical method for a no-blocking heliostat field layout, 2001, Yenilenebilir Enerji, 23,77-92.
  • Mehos, M., Turchi, C., Vidal, J, Wagner, M., Ma, Z., Ho, C., Kolb, W., Andraka, C., Kruzenga, A., 2017, Concentrating Solar Power Gen3 Demonstration Roadmap. NREL/TP-5500-67464, 127.
  • Wagner, M.J., Wendelin, T., 2018, SolarPILOT: A power tower solar field layout and characterization tool, Solar Energy, 171, 185-196.
  • Qiu, Y., He, Y. L., Li, P., Du, B. C., A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver Erişim Tarihi: 07/08/2020. https://hal.archives-ouvertes.fr/hal-01344014v3
  • Khalsa, S.S.S., Ho, C.K., Andraka, C.E., An Automated Method To Correct Heliostat Tracking Racking Errors, Erişim Tarihi:07/08/2020. https://www.osti.gov/servlets/purl/1106781
  • Andraka, C.E., 2008. Cost/Performance Tradeoffs For Reflectors Used In Solar Concentrating Dish Systems. Erişim Tarihi: 08/08/2020. https://energy.sandia.gov/wp-content/gallery/uploads/Cost-performance_Tradeoffs.pdf
  • Leea, H.J., Kimb, J.K., Leeb, S.N., Yoonb, H.K., Kangb, Y.H., Parkc, M.H., 2015, Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea, Energy Procedia, 69, 126 – 131.
  • Göttsche, J., Lampkowski, M., Bezerra, P.H.S., Teramoto, É.T., Boura, C.T., 2017. A Method For Calculating The Slope Error Of Mirrored Surfaces Consisted Of Facets Curved In One Axis Used In Concentrated Solar Power (CSP) Tower Systems. Erişim Tarihi:08/08/2020. http://energia.fca.unesp.br/index.php/energia/article/view/2271
  • González, A.S., 2016, Heliostat field aiming strategies for solar central receivers, Carlos III de Madrid Üniversitesi, Termal ve Akışkan Mühendisliği Bölümü, Doktora tezi, 104s., Madrid.
  • Hekim, M., 2017, Merkezi Alıcı Sistemli(MAS) Güneş Güç Santrali Birecik Uygulaması, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 137s., Ankara.
  • Bonanos, A.M., 2012, Error analysis for concentrated solar collectors, Renewable Sustainable Energy, 4,1-11.
  • Xu, E., Yu, Q., Wang, Z., Yang, C., 2011, Modeling and simulation of 1 MW DAHAN solar thermal power tower plant, Renewable Energy, 36, 848-587.
  • Christian, J.M., Ho, C.K., 2012, CFD simularion and heat loss analysis of the solar two power tower receiver, Proceedings of ASME 2012, 23-26 temmuz, San Diego, 1-9.
  • Şen, S., 2021, Tepe Heliostat Alanlı Güneş Kulesi Uygulamaları, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 112s, Isparta,

SolarPILOT UYGULAMASIYLA ISPARTA İLİNDE GÜNEŞ KULESİ MODELLEMESİ

Yıl 2021, , 1302 - 1325, 20.12.2021
https://doi.org/10.21923/jesd.809392

Öz

Bu çalışma, özellikle heliostat aynaların alıcıya odaklanarak yüksek sıcaklıklarda enerji üretimi için çalışmalarda bulunulan Merkezi Odaklamalı Güneş Güç Sistemi veya Güneş Kulesi olarak adlandırılan sisteme ve sistem tasarımlarına farklı bakış açısı getirmek amacıyla SolarPILOT programı tanıtılmıştır. Isparta ili için günlük 10 MWt kapasiteli, yıllık enerji üretimi gerçekleştirilecek planlamasıyla, sistem uygulanabilirliği için sistem tasarımının en önemli hesaplama parametreleri olan heliostat alan ve heliostat alanın termal gücüne bağlı alıcı ve heliostat alan yerleşimi incelenmiştir. Bu işlemler için, güneş ışınım modeli, güneşlenme modeli, sistem tasarım parametreleri, heliostat seçim kriterleri, optimizasyon simülasyonu gerçekleştirilmiştir. Bu hususların adım adım SolarPILOT uygulamasında kullanılan modeller açıklanarak, hesaplama için seçimi gerçekleştirilen model açıklamasıyla birlikte verilmiştir. Uygulama tasarım değerleri tespit edilmiş olup, uygulamanın yapılması planlanan arazinin yıllık ortalama DNI (Direct Normal Irradiation (Doğrudan Normal Işınım)) verisi tespit edilerek sistem optimizasyonu gerçekleştirilmiştir. Alan düzenlemesi gerçekleştirilerek sistem için gerekli heliostat alanı tespit edilmiştir. Yaklaşık termal kayıplar belirlenerek sistem hesaplamaları tamamlanmıştır. Bulgular, güneş kulesi modelinin Isparta ili için uygulanabilir olduğunu göstermiş ve tasarım parametreleri elde edilmiştir.

Kaynakça

  • SAM, 2020. Erişim Tarihi:17/07/2020. https://sam.nrel.gov/
  • NREL, 2020. Solar Power Tower Integrated Layout and Optimization Tool. Erişim Tarihi: 17/07/2020. https://www.nrel.gov/csp/solarpilot.html
  • European Commission, 2019. Photovoltaic Geographical Information System. Erişim Tarihi: 23/07/2020. https://re.jrc.ec.europa.eu/pvg_tools/en/#TMY
  • Freedictionary, 2020, Erişim Tarihi: 31/08/2020. https://encyclopedia2.thefreedictionary.com /Atmospheric+Attenuation#:~:text=a%20reduction%20in%20the%20intensity,molecules%20of%20air%20and%20aerosols.
  • NREL, 2018. SolarPILOT (Sürüm 1.3.8)[Yazılım]. Denver, USA. Tedarik edilebileceği adres: https://www.nrel.gov/csp/solarpilot-download.html
  • Lopez, J.N.M., 2016, The inuence of irradiance concentration using an asymmetric reector on the electrical performance of a PVT hybrid collector with standard monocrystalline cells, Lizbon Üniversitesi, Enerji Mühendisliği ve Yönetimi bölümü, Yüksek Lisans tezi, 66 s., Lizbon.
  • Cole, I.R., Gottschalg, R., 2015. Optical modelling for concentrating photocoltaic systems: insolation transfer variations with solar source descriptions, IET Renewable Power Generation, 9(5), 413-419.
  • Kamada, R.F., Flocchini, R.G., Gaussian Solar Flux Model, Solar Energy, 1986,36(1), 73-87.
  • System Advisor Model, Overview of NREL’s SolarPilot(TM) and SolTrace Open-source Softwate(video dosyası) Erişim Tarihi:26/07/2020 https://www.youtube.com/watch?v=wiYV2VLqr_k
  • Ramadevi, M.C., Limb Darkening, Erişim Tarihi: 25/07/2020 http://www.iucaa.in/~dipankar/ph217/contrib/limb.pdf
  • Wang, Y., Potter, D., Asselineau, C.A., Corsi, C., Wagner, M., Caliot, C., Piaud, B., Blanco, M., Kim, J.S., Pye, J., Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems, 2020, Solar Energy 195 (2020) 461–474.
  • Bird, R., Hulstrom, R.L., 1980, Direct Insolation Models, Erişim Tarihi: 26/07/2020 https://www.nrel.gov/docs/legosti/old/344.pdf
  • Hanrieder, N., Sengupta, M., Xie, Y., Wilbert, S., Paal, R.P., Modeling beam attenuation in solar tower plants using common DNI measurements, Solar Energy, 2016, 129, 244-255.
  • SAND2008-8053, 2008. Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Ulusal Laboratuvarları. Kaliforniya.
  • Bouamra, M., Merzouk, M., 2019, Cosine Efficiency Distribution with Reduced Tower Shadowing Effect in Rotating Heliostat Field, Arabian Journal for Science and Engineering, 44, 1415-1424.
  • EİGM, 2020, Erişim Tarihi: 07/09/2020. http://www.yegm.gov.tr/MyCalculator/pages/32.aspx
  • Wikipedia, Yaz Gündönümü. Erişim Tarihi: 28/07/2020. https://tr.wikipedia.org/wiki/Yaz_g%C3%BCnd%C3%B6n%C3%BCm%C3%BC
  • Sarıgül, T., 2018, Ekinoks Nedir? Erişim Tarihi:28/07/2020. http://bilimgenc.tubitak.gov.tr/makale/ekinoks-nedir
  • Wikipedia Ekinoks. Erişim Tarihi:01/09/2020. https://tr.wikipedia.org/wiki/Ekinoks
  • Wikipedia Kış Gündönümü. Erişim Tarihi:28/07/2020. https://tr.wikipedia.org/wiki/K%C4%B1%C5%9F_g%C3%BCnd%C3%B6n%C3%BCm%C3%BC
  • Ceylan. İ., Gürel. E., 2017, Güneş Enerjisi Sistemleri ve Tasarımı. Dora yayınevi, 196s, Bursa.
  • European Commission, 2020, Report on Best Available Technologies (BAT) for central receiver systems. 221766, 70.
  • Gadalla, M., Saghafifar, M., 2018, A concise overview of heliostat fields-solar thermal collectors: Current state of art and future perspective, International Journal Of Energy Research, 3145- 3163.
  • Arrif, T., Benchabane, A., Germoui, M., Bezza, B., Belaid. A., 2018. Optimisation of heliostat field layout for solar power tower systems using iterative artificial bee colony algorithm: a review and case study. Erişim Tarihi: 29/07/2020. https://www.tandfonline.com/doi/full/10.1080/01430750.2018 .1525581
  • Siala, F.M.F., Elayeb, M.E., Mathematical formulation of a graphical method for a no-blocking heliostat field layout, 2001, Yenilenebilir Enerji, 23,77-92.
  • Mehos, M., Turchi, C., Vidal, J, Wagner, M., Ma, Z., Ho, C., Kolb, W., Andraka, C., Kruzenga, A., 2017, Concentrating Solar Power Gen3 Demonstration Roadmap. NREL/TP-5500-67464, 127.
  • Wagner, M.J., Wendelin, T., 2018, SolarPILOT: A power tower solar field layout and characterization tool, Solar Energy, 171, 185-196.
  • Qiu, Y., He, Y. L., Li, P., Du, B. C., A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver Erişim Tarihi: 07/08/2020. https://hal.archives-ouvertes.fr/hal-01344014v3
  • Khalsa, S.S.S., Ho, C.K., Andraka, C.E., An Automated Method To Correct Heliostat Tracking Racking Errors, Erişim Tarihi:07/08/2020. https://www.osti.gov/servlets/purl/1106781
  • Andraka, C.E., 2008. Cost/Performance Tradeoffs For Reflectors Used In Solar Concentrating Dish Systems. Erişim Tarihi: 08/08/2020. https://energy.sandia.gov/wp-content/gallery/uploads/Cost-performance_Tradeoffs.pdf
  • Leea, H.J., Kimb, J.K., Leeb, S.N., Yoonb, H.K., Kangb, Y.H., Parkc, M.H., 2015, Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea, Energy Procedia, 69, 126 – 131.
  • Göttsche, J., Lampkowski, M., Bezerra, P.H.S., Teramoto, É.T., Boura, C.T., 2017. A Method For Calculating The Slope Error Of Mirrored Surfaces Consisted Of Facets Curved In One Axis Used In Concentrated Solar Power (CSP) Tower Systems. Erişim Tarihi:08/08/2020. http://energia.fca.unesp.br/index.php/energia/article/view/2271
  • González, A.S., 2016, Heliostat field aiming strategies for solar central receivers, Carlos III de Madrid Üniversitesi, Termal ve Akışkan Mühendisliği Bölümü, Doktora tezi, 104s., Madrid.
  • Hekim, M., 2017, Merkezi Alıcı Sistemli(MAS) Güneş Güç Santrali Birecik Uygulaması, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 137s., Ankara.
  • Bonanos, A.M., 2012, Error analysis for concentrated solar collectors, Renewable Sustainable Energy, 4,1-11.
  • Xu, E., Yu, Q., Wang, Z., Yang, C., 2011, Modeling and simulation of 1 MW DAHAN solar thermal power tower plant, Renewable Energy, 36, 848-587.
  • Christian, J.M., Ho, C.K., 2012, CFD simularion and heat loss analysis of the solar two power tower receiver, Proceedings of ASME 2012, 23-26 temmuz, San Diego, 1-9.
  • Şen, S., 2021, Tepe Heliostat Alanlı Güneş Kulesi Uygulamaları, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 112s, Isparta,
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Serhat Şen 0000-0002-0839-4804

İbrahim Üçgül 0000-0001-9794-0653

Yayımlanma Tarihi 20 Aralık 2021
Gönderilme Tarihi 12 Ekim 2020
Kabul Tarihi 15 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şen, S., & Üçgül, İ. (2021). SolarPILOT UYGULAMASIYLA ISPARTA İLİNDE GÜNEŞ KULESİ MODELLEMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(4), 1302-1325. https://doi.org/10.21923/jesd.809392