Araştırma Makalesi
BibTex RIS Kaynak Göster

COMPRASION OF THE PERFORMANCE OF MULTI-OBJECTIVE META-HEURISTIC OPTIMIZATION ALGORITHMS

Yıl 2020, , 185 - 199, 29.12.2020
https://doi.org/10.21923/jesd.828566

Öz

Proje Numarası

1919B011904092

Kaynakça

  • Cavus, M., Sezer, A., & Yazici, B. (2015). A simulation study on generalized pareto mixture model. In Computational Problems in Science and Engineering (pp. 249-259). Springer, Cham.
  • Deb, K., & Tiwari, S. (2008). Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, 185(3), 1062-1087.
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
  • Deb, Kalyanmoy, et al. "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II." International conference on parallel problem solving from nature. Springer, Berlin, Heidelberg, 2000.
  • E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G.D. Fonseca, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput. 7 (2) (2003) 117–132.
  • Ibrahim, A. M., Tawhid, M. A., & Ward, R. K. (2020). A binary water wave optimization for feature selection. International Journal of Approximate Reasoning, 120, 74-91.
  • Ishibuchi, H., & Murata, T. (1996, May). Multi-objective genetic local search algorithm. In Proceedings of IEEE international conference on evolutionary computation (pp. 119-124). IEEE.
  • Kahraman, H. T., Aras, S., & Gedikli, E. (2020). Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms. Knowledge-Based Systems, 190, 105169.
  • Ke, L., Zhang, Q., & Battiti, R. (2014). Hybridization of decomposition and local search for multiobjective optimization. IEEE transactions on cybernetics, 44(10), 1808-1820.
  • Köse, U. (2017). Yapay zeka tabanlı optimizasyon algoritmaları geliştirilmesi, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • KS, S. R., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63-78.
  • Liang, J., Suganthan, P. N., Qu, B. Y., Gong, D. W., Yue, C. T., (2019), Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization, 201912, Zhengzhou University, doi: 10.13140/RG.2.2.31746.02247.
  • Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., & Shang, K. (2018, September). A double-niched evolutionary algorithm and its behavior on polygon-based problems. In International Conference on Parallel Problem Solving from Nature (pp. 262-273). Springer, Cham.
  • Luo, J., Liu, Q., Yang, Y., Li, X., Chen, M. R., & Cao, W. (2017). An artificial bee colony algorithm for multi-objective optimisation. Applied Soft Computing, 50, 235-251.
  • Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.
  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
  • Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79-95.
  • Osawa, R., Watanabe, S., Hiroyasu, T., & Hiwa, S. (2019, December). Performance Study of Double-Niched Evolutionary Algorithm on Multi-objective Knapsack Problems. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1793-1801). IEEE.
  • S. Mirjalili, P. Jangir, S. Z. Mirjalili, S. Saremi, and I. N. Trivedi, Optimization of problems with multiple objectives using the multi-verse optimization algorithm, Knowledge-based Systems, 2017, DOI: http://dx.doi.org/10.1016/j.knosys.2017.07.018
  • Santos, R., Borges, G., Santos, A., Silva, M., Sales, C., & Costa, J. C. (2019). Empirical study on rotation and information exchange in particle swarm optimization. Swarm and Evolutionary Computation, 48, 312-328.
  • Serafini, P. (1994). Simulated annealing for multi objective optimization problems. In Multiple criteria decision making (pp. 283-292). Springer, New York, NY.
  • Yue, C., Qu, B., Yu, K., Liang, J., & Li, X. (2019). A novel scalable test problem suite for multimodal multiobjective optimization. Swarm and Evolutionary Computation, 48, 62-71.
  • Yue, C.T., Liang, J.J., Qu, B.Y., (2018), A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Comput. 22,5, 805-817, https://doi.org/10.1109/tevc.2017.2754271.
  • Zhang, X., Tian, Y., Cheng, R., & Jin, Y. (2014). An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 19(2), 201-213.
  • Zhou, A., Zhang, Q., & Jin, Y. (2009). Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE transactions on evolutionary computation, 13(5), 1167-1189.
  • Zhou, Q. Zhang, Y. Jin, Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm, IEEE Trans. Evol. Comput. 13 (5) (2009) 1167–1189.

ÇOK AMAÇLI META-SEZGİSEL OPTİMİZASYON ALGORİTMALARININ PERFORMANSLARININ KARŞILAŞTIRILMASI

Yıl 2020, , 185 - 199, 29.12.2020
https://doi.org/10.21923/jesd.828566

Öz

Çok amaçlı optimizasyon problemlerinin çözümlenmesi tek amaçlı optimizasyon problemlerine kıyasla daha karmaşık süreçlerden oluşmaktadır. Özellikle çok kriterli optimizasyon sürecinde pareto-tabanlı yaklaşımların uygulanması ve meta-sezgisel arama algoritmalarının çok amaçlı optimizasyon problemlerindeki performanslarının ölçülmesi başlıca zorluklardır. Bu iki sebepten dolayı literatürde çok amaçlı problemlerin optimizasyonu amacıyla geliştirilmiş ya da bu amaç için uyarlanmış az sayıda meta-sezgisel optimizasyon algoritması bulunmaktadır. Bu durum çok amaçlı optimizasyon çalışmaları yürüten araştırmacılar açısından da belirsizlikler yaratmaktadır. Bu makale çalışmasında literatürdeki bu belirsizliği gidermeye yönelik çalışmalar yürütülmektedir. İlk olarak çok amaçlı optimizasyon algoritmalarının test edildiği bir platform tasarlanmıştır. Bu platformda algoritmalar, pareto-tabanlı yaklaşımlar, çok-modlu çok-amaçlı test problemleri ve performans metrikleri olmak üzere çok amaçlı optimizasyonun dört temel öğesi modüler yapıda tasarlanmıştır. Geliştirilen platformda çok amaçlı optimizasyon algoritmalarının test edilmeleri için güncel bir karşılaştırma ve test havuzu olan ve CEC 2020 yarışması için hazırlanmış olan çok modlu çok amaçlı optimizasyon problemleri havuzu kullanılmıştır. Deneysel çalışma ayarları ve performans metrikleri CEC 2020 standartları esas alınarak yürütülmüştür. Literatürde yer alan sekiz adet çok amaçlı meta-sezgisel optimizasyon algoritmasının 24 farklı problem üzerinde performansları ölçülerek (dört farklı performans metriği kullanılarak) birbirleriyle karşılaştırılmıştır. Elde edilen sonuçlar araştırmacılar açısından eşsiz bilgiler sunmaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B011904092

Teşekkür

Bu çalışmada yürütülen faaliyetler, 2020 yılında TÜBİTAK 2209-A Üniversite Öğrencileri Yurt İçi Araştırma Projeleri Destek Programı kapsamında 1919B011904092 numaralı proje olarak TUBİTAK tarafından desteklenmiştir.

Kaynakça

  • Cavus, M., Sezer, A., & Yazici, B. (2015). A simulation study on generalized pareto mixture model. In Computational Problems in Science and Engineering (pp. 249-259). Springer, Cham.
  • Deb, K., & Tiwari, S. (2008). Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, 185(3), 1062-1087.
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
  • Deb, Kalyanmoy, et al. "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II." International conference on parallel problem solving from nature. Springer, Berlin, Heidelberg, 2000.
  • E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G.D. Fonseca, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput. 7 (2) (2003) 117–132.
  • Ibrahim, A. M., Tawhid, M. A., & Ward, R. K. (2020). A binary water wave optimization for feature selection. International Journal of Approximate Reasoning, 120, 74-91.
  • Ishibuchi, H., & Murata, T. (1996, May). Multi-objective genetic local search algorithm. In Proceedings of IEEE international conference on evolutionary computation (pp. 119-124). IEEE.
  • Kahraman, H. T., Aras, S., & Gedikli, E. (2020). Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms. Knowledge-Based Systems, 190, 105169.
  • Ke, L., Zhang, Q., & Battiti, R. (2014). Hybridization of decomposition and local search for multiobjective optimization. IEEE transactions on cybernetics, 44(10), 1808-1820.
  • Köse, U. (2017). Yapay zeka tabanlı optimizasyon algoritmaları geliştirilmesi, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • KS, S. R., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63-78.
  • Liang, J., Suganthan, P. N., Qu, B. Y., Gong, D. W., Yue, C. T., (2019), Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization, 201912, Zhengzhou University, doi: 10.13140/RG.2.2.31746.02247.
  • Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., & Shang, K. (2018, September). A double-niched evolutionary algorithm and its behavior on polygon-based problems. In International Conference on Parallel Problem Solving from Nature (pp. 262-273). Springer, Cham.
  • Luo, J., Liu, Q., Yang, Y., Li, X., Chen, M. R., & Cao, W. (2017). An artificial bee colony algorithm for multi-objective optimisation. Applied Soft Computing, 50, 235-251.
  • Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.
  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
  • Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79-95.
  • Osawa, R., Watanabe, S., Hiroyasu, T., & Hiwa, S. (2019, December). Performance Study of Double-Niched Evolutionary Algorithm on Multi-objective Knapsack Problems. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1793-1801). IEEE.
  • S. Mirjalili, P. Jangir, S. Z. Mirjalili, S. Saremi, and I. N. Trivedi, Optimization of problems with multiple objectives using the multi-verse optimization algorithm, Knowledge-based Systems, 2017, DOI: http://dx.doi.org/10.1016/j.knosys.2017.07.018
  • Santos, R., Borges, G., Santos, A., Silva, M., Sales, C., & Costa, J. C. (2019). Empirical study on rotation and information exchange in particle swarm optimization. Swarm and Evolutionary Computation, 48, 312-328.
  • Serafini, P. (1994). Simulated annealing for multi objective optimization problems. In Multiple criteria decision making (pp. 283-292). Springer, New York, NY.
  • Yue, C., Qu, B., Yu, K., Liang, J., & Li, X. (2019). A novel scalable test problem suite for multimodal multiobjective optimization. Swarm and Evolutionary Computation, 48, 62-71.
  • Yue, C.T., Liang, J.J., Qu, B.Y., (2018), A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Comput. 22,5, 805-817, https://doi.org/10.1109/tevc.2017.2754271.
  • Zhang, X., Tian, Y., Cheng, R., & Jin, Y. (2014). An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 19(2), 201-213.
  • Zhou, A., Zhang, Q., & Jin, Y. (2009). Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE transactions on evolutionary computation, 13(5), 1167-1189.
  • Zhou, Q. Zhang, Y. Jin, Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm, IEEE Trans. Evol. Comput. 13 (5) (2009) 1167–1189.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Mustafa Akbel 0000-0003-0491-5438

Hamdi Kahraman 0000-0001-9985-6324

Proje Numarası 1919B011904092
Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 20 Kasım 2020
Kabul Tarihi 20 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Akbel, M., & Kahraman, H. (2020). ÇOK AMAÇLI META-SEZGİSEL OPTİMİZASYON ALGORİTMALARININ PERFORMANSLARININ KARŞILAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(5), 185-199. https://doi.org/10.21923/jesd.828566