Derleme
BibTex RIS Kaynak Göster

VURGULU ELEKTRİK ALAN (PEF) TEKNİĞİNİN ÇİĞ SÜTTE MİKROBİYAL LİPAZ ENZİM AKTİVİTESİ ÜZERİNE ETKİNLİĞİNİN ARAŞTIRILMASI

Yıl 2021, , 1039 - 1044, 21.09.2021
https://doi.org/10.21923/jesd.876275

Öz

Süt ihtiva ettiği yüksek oranda su, nötr pH ve besleyici bileşenler ile mikroorganizmalar ve enzimler için ideal bir ortamdır. Çiğ sütü mikroorganizmalardan arındırmak ve istenmeyen kusurlara neden olan enzimleri inaktif etmek ve ayrıca sütün raf ömrünü uzatmada en bilinen muhafaza yöntemi ısıl işlemdir. Süt içerisindeki doğal enzimler pastörizasyon sıcaklığında inaktif olmakta ancak bakteriyel kaynaklı enzimler ise bu sıcaklığa dayanıklıdır. Yüksek derecedeki ısıl işlem normları sütün hem besin öğelerinde kayıplara hem de tekstür bozukluklarına neden olmaktadır. Aynı zamanda uzun süreli depolama ile ısıl işleme dirençli psikrofilik ve mezofilik bakteri kaynaklı enzimlerin oluşumu meydana gelmektedir. Bu enzimlerin başında süt teknolojisinde çeşitli tekstürel ve teknolojik sorunlara sebep olan lipaz enzimi gelmektedir. Çalışmada bakteriyel kaynaklı lipaz enziminin, ısıl işleme alternatif gıda muhafaza tekniklerinden biri olan vurgulu elektrik alan uygulaması ile etkinliği araştırılmıştır.

Kaynakça

  • Ajmal, M., Nadeem, M., Imran, M., & Junaid, M., 2018. Lipid compositional changes and oxidation status of ultra-high temperature treated Milk. Lipids in health and disease, 17(1), 1-11.
  • Alirezalu, K., Munekata, P. E., Parniakov, O., Barba, F. J., Witt, J., Toepfl, S., Lorenzo, J. M., 2020. Pulsed electric field and mild heating for milk processing: a review on recent advances. Journal of the Science of Food and Agriculture, 100(1), 16-24.
  • Bendicho, S., Estela, C., Giner, J., Barbosa-Cánovas, G. V., & Martin, O., 2002. Effects of high intensity pulsed electric field and thermal treatments on a lipase from Pseudomonas fluorescens. Journal of dairy science, 85(1), 19-27.
  • Chen, L. D. R. M., Daniel, R. M., & Coolbear, T., 2003. Detection and impact of protease and lipase activities in milk and milk powders. International dairy journal, 13(4), 255-275.
  • Cserhalmi, Z., Sass-Kiss, A., Tóth-Markus, M., & Lechner, N., 2006. Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1-2), 49-54.
  • De Jonghe V, Coorevits A, Van Hoorde K, Messens W, Van Landschoot A, De Vos P & Heyndrickx M., 2011. Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk. Appl Environ Microbiol 77: 460– 470.
  • Deeth, H. C., & Fitz-Gerald, C. H., 2006. Lipolytic enzymes and hydrolytic rancidity. Advanced Dairy Chemistry, 2, 481–556.
  • Deeth, H. C., 2006. Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16(6), 555-562.
  • Deeth, H. C., Touch, V., 2000. Methods for detecting lipase activity in milk and milk products. Methods, 5(5), 555.
  • Eneroth, Å., Ahrné, S., Molin, G., 2000. Contamination of milk with Gram-negative spoilage bacteria during filling of retail containers. International Journal of Food Microbiology, 57(1-2), 99-106.
  • Evrendilek, G. A., Zhang, Q. H., Richter, E. R., 2004. Application of pulsed electric fields to skim milk inoculated with Staphylococcus aureus. Biosystems Engineering, 87(2), 137-144.
  • Gehringer, G., 1980. Multiplikation of bacteria during farm storage. In Factor influensing the bacteriologicalquality of raw milk. International Dairy Federation Bulletin, Document 120.
  • Glantz, M., Rosenlöw, M., Lindmark-Månsson, H., Johansen, L. B., Hartmann, J., Höjer, A., ... & Paulsson, M., 2020. Impact of protease and lipase activities on quality of Swedish raw milk. International Dairy Journal, 107, 104724.
  • Gómez, B., Munekata, P. E., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T., Lorenzo, J. M., 2019. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International, 123, 95-105.
  • Hasan, F., Shah, A. A., Hameed, A., 2009. Methods for detection and characterization of lipases: a comprehensive review. Biotechnology advances, 27(6), 782-798.
  • Ho, S. Y., Mittal, G. S., Cross, J. D., 1997. Effects of high field electric pulses on the activity of selected enzymes. Journal of food engineering, 31(1), 69-84.
  • Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., van Heuvel, M., & Misset, O., 1994. Bacterial lipases. FEMS microbiology reviews, 15(1), 29-63.
  • Krewinkel, M., Baur, C., Kranz, B., von Neubeck, M., Wenning, M., Scherer, S., ... & Fischer, L., 2016. A sensitive and robust method for direct determination of lipolytic activity in natural milk environment. Food analytical methods, 9(3), 646-655.
  • Kumar, A., Parihar, S. S., Batra, N., 2012. Enrichment, isolation and optimization of lipase-producing Staphylococcus sp. from oil mill waste (Oil cake). Journal of Experimental Sciences, 3(8), 26-30.
  • Li, N., Wang, Y., You, C., Ren, J., Chen, W., Zheng, H., & Liu, Z., 2018. Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Scientific reports, 8(1), 1-10.
  • Machado, S. G., Baglinière, F., Marchand, S., Van Coillie, E., Vanetti, M. C., De Block, J., & Heyndrickx, M., 2017. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in microbiology, 8, 302.
  • Mosqueda-Melgar, J., Elez-Martinez, P., Raybaudi-Massilia, R. M., Martin-Belloso, O., 2008. Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Critical Reviews in Food Science and Nutrition, 48(8), 747-759.
  • Ohshima, T., Tamura, T., Sato, M., 2007. Influence of pulsed electric field on various enzyme activities. Journal of Electrostatics, 65(3), 156-161.
  • Roy, R. N., 1980. Fluorimetric assay of the activity of extracellular lipases of Pseudomonas fluorescens and Serratia marcescens. Journal of Applied Bacteriology, 49(2), 265-271.
  • Salgado, C. A., Baglinière, F., & Vanetti, M. C. D., 2020. Spoilage potential of a heat-stable lipase produced by Serratia liquefaciens isolated from cold raw milk. LWT, 126, 109289.
  • Samaržija, D., Zamberlin, Š., & Pogačić, T., 2012. Psychrotrophic bacteria and their negative effects on milk and dairy products quality. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 62(2), 77-95.
  • Sampedro, F., Rodrigo, M., Martinez, A., Rodrigo, D., & Barbosa-Cánovas, G. V., 2005. Quality and safety aspects of PEF application in milk and milk products. Critical Reviews in Food Science and Nutrition, 45(1), 25-47.
  • Saraç, N., Boran, R., Ökmen, G., & Aysel, U. Ğ. U. R., 2008. Toprak ve Süt Kökenli Gram Pozitif Bakterilerde Lipaz Üretimi. Research Journal of Biology Sciences, 1(2), 23-28.
  • Scudino, H., Silva, E. K., Gomes, A., Guimarães, J. T., Cunha, R. L., Sant'Ana, A. S., Cruz, A. G., 2020. Ultrasound stabilization of raw milk: Microbial and enzymatic inactivation, physicochemical properties and kinetic stability. Ultrasonics sonochemistry, 67, 105185.
  • Sharma, P., Oey, I., & Everett, D. W. (2014). Effect of pulsed electric field processing on the functional properties of bovine milk. Trends in food science & technology, 35(2), 87-101.
  • Sharma, P., Oey, I., Bremer, P., & Everett, D. W., 2014. Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal, 39(1), 146-156.
  • Thomson, C. A., Delaquis, P. J., & Mazza, G., 1999. Detection and measurement of microbial lipase activity: a review. Critical Reviews in Food Science and Nutrition, 39(2), 165-187.
  • Ünal, R. N., Besler, H. T., 2008. Beslenmede sütün önemi. Sağlık Bakanlığı Yayın, 727.
  • Vega-Mercado, H., Powers, J. R., Barbosa-Canovas, G. V., Swanson, B. G., 2001. Effect of added calcium and EDTA on the inactivation of a protease from Pseudomonas fluorescens M3/6 when exposed to pulsed electric fields (pp. 121-134). Lancaster: Technomic Publishing Company, Inc.
  • Versaw, W. K., Cuppett, S. L., Winters, D. D., Williams, L. E., 1989. An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science, 54(6), 1557-1558.
  • Yang, S., Suwal, S., Andersen, U., Otte, J., Ahrné, L., 2020. Effects of pulsed electric field on fat globule structure, lipase activity, and fatty acid composition in raw milk and milk with different fat globule sizes. Innovative Food Science & Emerging Technologies, 102548.
  • Yangılar, F., 2013. Süt ve Süt Ürünlerinde Hidroksimetilfurfural HMF. Akademik Gıda, 11(3), 70-76.
  • Yangılar, F., Kabil, E., Yılmaz, F., 2013. Pef işleminin süt ve süt ürünlerinde uygulanabilirliği. Manas Journal of Engineering, 1(1), 43-50.
  • Zhang, D., Palmer, J., Teh, K. H., Flint, S., 2020. Identification and selection of heat-stable protease and lipase-producing psychrotrophic bacteria from fresh and chilled raw milk during up to five days storage. LWT, 134, 110165.
  • Zhang, Q., Chang, F. J., Barbosa-Cánovas, G. V., & Swanson, B. G., 1994. Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields. LWT-Food Science and Technology, 27(6), 538-543.

INVESTIGATION OF THE EFFECTIVENESS OF THE PULSED ELECTRIC FIELD (PEF) TECHNIQUE ON MICROBIAL LIPASE ENZYME ACTIVITY IN RAW MILK

Yıl 2021, , 1039 - 1044, 21.09.2021
https://doi.org/10.21923/jesd.876275

Öz

Milk is an ideal food for microorganisms and enzymes with its high water content, neutral pH and nutritious ingredients. Heat treatment is the best known preservation method to purify raw milk from microorganisms and inactivate enzymes that cause undesirable defects and also to extend the shelf life of milk. Natural enzymes in milk are inactive at pasteurization temperature, but bacterial enzymes are resistant to this temperature. High degree of heat treatment norms cause both nutritional losses and texture disorders in milk. At the same time, the formation of psychrophilic and mesophilic bacteria-derived enzymes resistant to heat treatment occurs with long-term storage. Lipase enzyme, which causes various textural and technological problems in milk technology, comes first among these enzymes. In the study, the effectiveness of bacterial lipase enzyme with pulsed electric field application, which is one of the alternative food preservation techniques to heat treatment, was investigated.

Kaynakça

  • Ajmal, M., Nadeem, M., Imran, M., & Junaid, M., 2018. Lipid compositional changes and oxidation status of ultra-high temperature treated Milk. Lipids in health and disease, 17(1), 1-11.
  • Alirezalu, K., Munekata, P. E., Parniakov, O., Barba, F. J., Witt, J., Toepfl, S., Lorenzo, J. M., 2020. Pulsed electric field and mild heating for milk processing: a review on recent advances. Journal of the Science of Food and Agriculture, 100(1), 16-24.
  • Bendicho, S., Estela, C., Giner, J., Barbosa-Cánovas, G. V., & Martin, O., 2002. Effects of high intensity pulsed electric field and thermal treatments on a lipase from Pseudomonas fluorescens. Journal of dairy science, 85(1), 19-27.
  • Chen, L. D. R. M., Daniel, R. M., & Coolbear, T., 2003. Detection and impact of protease and lipase activities in milk and milk powders. International dairy journal, 13(4), 255-275.
  • Cserhalmi, Z., Sass-Kiss, A., Tóth-Markus, M., & Lechner, N., 2006. Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1-2), 49-54.
  • De Jonghe V, Coorevits A, Van Hoorde K, Messens W, Van Landschoot A, De Vos P & Heyndrickx M., 2011. Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk. Appl Environ Microbiol 77: 460– 470.
  • Deeth, H. C., & Fitz-Gerald, C. H., 2006. Lipolytic enzymes and hydrolytic rancidity. Advanced Dairy Chemistry, 2, 481–556.
  • Deeth, H. C., 2006. Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16(6), 555-562.
  • Deeth, H. C., Touch, V., 2000. Methods for detecting lipase activity in milk and milk products. Methods, 5(5), 555.
  • Eneroth, Å., Ahrné, S., Molin, G., 2000. Contamination of milk with Gram-negative spoilage bacteria during filling of retail containers. International Journal of Food Microbiology, 57(1-2), 99-106.
  • Evrendilek, G. A., Zhang, Q. H., Richter, E. R., 2004. Application of pulsed electric fields to skim milk inoculated with Staphylococcus aureus. Biosystems Engineering, 87(2), 137-144.
  • Gehringer, G., 1980. Multiplikation of bacteria during farm storage. In Factor influensing the bacteriologicalquality of raw milk. International Dairy Federation Bulletin, Document 120.
  • Glantz, M., Rosenlöw, M., Lindmark-Månsson, H., Johansen, L. B., Hartmann, J., Höjer, A., ... & Paulsson, M., 2020. Impact of protease and lipase activities on quality of Swedish raw milk. International Dairy Journal, 107, 104724.
  • Gómez, B., Munekata, P. E., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T., Lorenzo, J. M., 2019. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International, 123, 95-105.
  • Hasan, F., Shah, A. A., Hameed, A., 2009. Methods for detection and characterization of lipases: a comprehensive review. Biotechnology advances, 27(6), 782-798.
  • Ho, S. Y., Mittal, G. S., Cross, J. D., 1997. Effects of high field electric pulses on the activity of selected enzymes. Journal of food engineering, 31(1), 69-84.
  • Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., van Heuvel, M., & Misset, O., 1994. Bacterial lipases. FEMS microbiology reviews, 15(1), 29-63.
  • Krewinkel, M., Baur, C., Kranz, B., von Neubeck, M., Wenning, M., Scherer, S., ... & Fischer, L., 2016. A sensitive and robust method for direct determination of lipolytic activity in natural milk environment. Food analytical methods, 9(3), 646-655.
  • Kumar, A., Parihar, S. S., Batra, N., 2012. Enrichment, isolation and optimization of lipase-producing Staphylococcus sp. from oil mill waste (Oil cake). Journal of Experimental Sciences, 3(8), 26-30.
  • Li, N., Wang, Y., You, C., Ren, J., Chen, W., Zheng, H., & Liu, Z., 2018. Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Scientific reports, 8(1), 1-10.
  • Machado, S. G., Baglinière, F., Marchand, S., Van Coillie, E., Vanetti, M. C., De Block, J., & Heyndrickx, M., 2017. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in microbiology, 8, 302.
  • Mosqueda-Melgar, J., Elez-Martinez, P., Raybaudi-Massilia, R. M., Martin-Belloso, O., 2008. Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Critical Reviews in Food Science and Nutrition, 48(8), 747-759.
  • Ohshima, T., Tamura, T., Sato, M., 2007. Influence of pulsed electric field on various enzyme activities. Journal of Electrostatics, 65(3), 156-161.
  • Roy, R. N., 1980. Fluorimetric assay of the activity of extracellular lipases of Pseudomonas fluorescens and Serratia marcescens. Journal of Applied Bacteriology, 49(2), 265-271.
  • Salgado, C. A., Baglinière, F., & Vanetti, M. C. D., 2020. Spoilage potential of a heat-stable lipase produced by Serratia liquefaciens isolated from cold raw milk. LWT, 126, 109289.
  • Samaržija, D., Zamberlin, Š., & Pogačić, T., 2012. Psychrotrophic bacteria and their negative effects on milk and dairy products quality. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 62(2), 77-95.
  • Sampedro, F., Rodrigo, M., Martinez, A., Rodrigo, D., & Barbosa-Cánovas, G. V., 2005. Quality and safety aspects of PEF application in milk and milk products. Critical Reviews in Food Science and Nutrition, 45(1), 25-47.
  • Saraç, N., Boran, R., Ökmen, G., & Aysel, U. Ğ. U. R., 2008. Toprak ve Süt Kökenli Gram Pozitif Bakterilerde Lipaz Üretimi. Research Journal of Biology Sciences, 1(2), 23-28.
  • Scudino, H., Silva, E. K., Gomes, A., Guimarães, J. T., Cunha, R. L., Sant'Ana, A. S., Cruz, A. G., 2020. Ultrasound stabilization of raw milk: Microbial and enzymatic inactivation, physicochemical properties and kinetic stability. Ultrasonics sonochemistry, 67, 105185.
  • Sharma, P., Oey, I., & Everett, D. W. (2014). Effect of pulsed electric field processing on the functional properties of bovine milk. Trends in food science & technology, 35(2), 87-101.
  • Sharma, P., Oey, I., Bremer, P., & Everett, D. W., 2014. Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal, 39(1), 146-156.
  • Thomson, C. A., Delaquis, P. J., & Mazza, G., 1999. Detection and measurement of microbial lipase activity: a review. Critical Reviews in Food Science and Nutrition, 39(2), 165-187.
  • Ünal, R. N., Besler, H. T., 2008. Beslenmede sütün önemi. Sağlık Bakanlığı Yayın, 727.
  • Vega-Mercado, H., Powers, J. R., Barbosa-Canovas, G. V., Swanson, B. G., 2001. Effect of added calcium and EDTA on the inactivation of a protease from Pseudomonas fluorescens M3/6 when exposed to pulsed electric fields (pp. 121-134). Lancaster: Technomic Publishing Company, Inc.
  • Versaw, W. K., Cuppett, S. L., Winters, D. D., Williams, L. E., 1989. An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science, 54(6), 1557-1558.
  • Yang, S., Suwal, S., Andersen, U., Otte, J., Ahrné, L., 2020. Effects of pulsed electric field on fat globule structure, lipase activity, and fatty acid composition in raw milk and milk with different fat globule sizes. Innovative Food Science & Emerging Technologies, 102548.
  • Yangılar, F., 2013. Süt ve Süt Ürünlerinde Hidroksimetilfurfural HMF. Akademik Gıda, 11(3), 70-76.
  • Yangılar, F., Kabil, E., Yılmaz, F., 2013. Pef işleminin süt ve süt ürünlerinde uygulanabilirliği. Manas Journal of Engineering, 1(1), 43-50.
  • Zhang, D., Palmer, J., Teh, K. H., Flint, S., 2020. Identification and selection of heat-stable protease and lipase-producing psychrotrophic bacteria from fresh and chilled raw milk during up to five days storage. LWT, 134, 110165.
  • Zhang, Q., Chang, F. J., Barbosa-Cánovas, G. V., & Swanson, B. G., 1994. Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields. LWT-Food Science and Technology, 27(6), 538-543.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler \ Review Articles
Yazarlar

Nurullah Zekeriya Akar 0000-0003-2485-2382

Yayımlanma Tarihi 21 Eylül 2021
Gönderilme Tarihi 7 Şubat 2021
Kabul Tarihi 4 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Akar, N. Z. (2021). VURGULU ELEKTRİK ALAN (PEF) TEKNİĞİNİN ÇİĞ SÜTTE MİKROBİYAL LİPAZ ENZİM AKTİVİTESİ ÜZERİNE ETKİNLİĞİNİN ARAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(3), 1039-1044. https://doi.org/10.21923/jesd.876275