Araştırma Makalesi
BibTex RIS Kaynak Göster

ECAP UYGULANAN AA7075 ALAŞIMININ MİKRO YAPI VE SERTLİK DEĞİŞİMLERİNİN İNCELENMESİ

Yıl 2021, , 1326 - 1338, 20.12.2021
https://doi.org/10.21923/jesd.913992

Öz

Bu çalışmada, havacılık endüstrisinde sıklıkla tercih edilen AA7075 alüminyum alaşımına EKAP uygulanarak alaşımın mikroyapısal ve sertlik değerlerindeki değişimin incelenmesi amaçlanmıştır. Plastik deformasyon yöntemlerinden biri olan EKAP yöntemi, farklı rota (A, Bc, C) ve farklı paso sayıları (2, 4, 8) için 0,025mm/sn presleme hızında ve 200°C’de başarıyla uygulanarak gerçekleştirilmiştir. EKAP işlemi uygulanarak elde edilen alüminyum alaşımının karakterizasyonu optik mikroskop (OM), X ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) analizleri ile yapılmıştır. Malzemenin mekanik özelliklerinin incelenebilmesi için sertlik testleri uygulanmıştır. Uygulama sonucunda elde edilen malzemelerin mikroyapıları incelenmiştir. AA7075 alaşımında uygulanan sıcaklık, presleme ve tane kırılmasına bağlı olarak çökelmenin meydana geldiği görülmüştür. Ayrıca ECAP yöntemi ile üretilen malzemelerin tane boyutunun küçültüldüğü ve buna bağlı olarak malzemenin mukavemetinin arttığı görülmektedir. EKAP işlemi sonucunda mevcut fazların α-Al, -MgZn2, S-Al2CuMg ve Al7Cu2Fe olduğu görülmüştür. Bc rotası kullanılarak 8 tekrarlı geçiş sonrasında elde edilen 288.4 nm tane boyutu elde edilen en küçük tane boyutu olmuştur.

Destekleyen Kurum

Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FBA-2020-8351

Kaynakça

  • Baker, H. 1990. Handbook-Alloy Phase Diagrams ASM International, 3279-337. Doi:
  • Cardoso, K. R., Munoz-Morris, M. A., Lieblich, M., and Morris, D. 2014. Effect of Equal Channel Angular Pressing (ECAP) on Microstructure and Properties of Al-FeAlCr Intermetallic Phase Composites, Materials Research-Ibero-American Journal of Materials, 17(3), 775-780. Doi: 10.1590/S1516-14392014005000029
  • Duan, Z. C., Liao, X. Z., Kawasaki, M., Figueiredo, R. B., and Langdon, T. G. 2010. Influence of high-pressure torsion on microstructural evolution in an Al-Zn-Mg-Cu alloy, Journal of Materials Science, 45(17), 4621-4630. Doi: 10.1007/s10853-010-4400-0.
  • Figueiredo, R. B., and Langdon, T. G. 2010. Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, Journal of Materials Science, 45(17), 4827-4836. Doi: 10.1007/s10853-010-4589-y.
  • Furukawa, M., Berbon, P. B., Horita, Z., Nemoto, M., Tsenev, N. K., Valiev, R. Z., and Langdon, T. G. 1997. Production of ultrafine-grained metallic materials using an intense plastic straining technique, Towards Innovation in Superplasticity I, 233-2177-184. Doi: 10.4028/www.scientific.net/MSF.233-234.177.
  • Furukawa, M., Horita, Z., and Langdon, T. G. 2001. Developing ultrafine grain sizes using severe plastic deformation, Advanced Engineering Materials, 3(3), 121-125. Doi: 10.1002/1527-2648(200103)3:3<121::AID-ADEM121>3.0.CO;2-V.
  • Gubicza, J., Chinh, N. Q., Csanadi, T., Langdon, T. G., and Ungar, T. 2007. Microstructure and strength of severely deformed fcc metals, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 462(1-2), 86-90. Doi: 10.1016/j.msea.2006.02.455.
  • Hockauf, M., Meyer, L. W., Nickel, D., Alisch, G., Lampke, T., Wielage, B., and Kruger, L. 2008. Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing, Journal of Materials Science, 43(23-24), 7409-7417. Doi: 10.1007/s10853-008-2724-9.
  • Huang, Y., and Langdon, T. G. 2002. Characterization of deformation processes in a Zn-22% Al alloy using atomic force microscopy, Journal of Materials Science, 37(23), 4993-4998. Doi: Doi 10.1023/A:1021071228521.
  • Janecek, M., Cizek, J., Gubicza, J., and Vratna, J. 2012. Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation, Journal of Materials Science, 47(22), 7860-7869. Doi: 10.1007/s10853-012-6538-4.
  • Janecek, M., Yi, S., Kral, R., Vratna, J., and Kainer, K. U. 2010. Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP, Journal of Materials Science, 45(17), 4665-4671. Doi: 10.1007/s10853-010-4675-1.
  • Langdon, T. G. 2013. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Materialia, 61(19), 7035-7059. Doi: 10.1016/j.actamat.2013.08.018.
  • Lapovok, R., Estrin, Y., Popov, M. V., Rundell, S., and Williams, T. 2008. Enhanced superplasticity of magnesium alloy AZ31 obtained through equal-channel angular pressing with back-pressure, Journal of Materials Science, 43(23-24), 7372-7378. Doi: 10.1007/s10853-008-2685-z.
  • Lee, S., Furukawa, M., Horita, Z., and Langdon, T. G. 2003. Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 342(1-2), 294-301. Doi: 10.1016/S0921-5093(02)00319-2.
  • Li, Y., and Langdon, T. G. 2000. Equal-channel angular pressing of an Al-6061 metal matrix composite, Journal of Materials Science, 35(5), 1201-1204. Doi: Doi 10.1023/A:1004740504619.
  • Liu, T., Zhang, W., Wu, S. D., Jiang, C. B., Li, S. X., and Xu, Y. B. 2003. Mechanical properties of a two-phase alloy Mg-8%Li-1%Al processed by equal channel angular pressing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 360(1-2), 345-349. Doi: 10.1016/S0921-5093(03)00494-5.
  • Lugo, N., Llorca, N., Sunol, J. J., and Cabrera, J. M. 2010. Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing, Journal of Materials Science, 45(9), 2264-2273. Doi: 10.1007/s10853-009-4139-7.
  • Malek, P., Cieslar, M., and Islamgaliev, R. K. 2004. The influence of ECAP temperature on the stability of Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds, 378(1-2), 237-241. Doi: 10.1016/j.jallcom.2003.11.161.
  • Mao, J., Kang, S. B., and Park, J. O. 2005. Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing, Journal of Materials Processing Technology, 159(3), 314-320. Doi: 10.1016/j.jmatprotec.2004.05.020.
  • Mckenzie, P. W. J., Lapovok, R., and Estrin, Y. 2007. The influence of back pressure on ECAP processed. AA 6016: Modeling and experiment, Acta Materialia, 55(9), 2985-2993. Doi: 10.1016/j.actamat.2006.12.038.
  • Meyer, L. W., Sommer, K., Halle, T., and Hockauf, M. 2008. Crack growth in ultrafine-grained AA6063 produced by equal-channel angular pressing, Journal of Materials Science, 43(23-24), 7426-7431. Doi: 10.1007/s10853-008-2725-8.
  • Murashkin, M. Y., Sabirov, I., Kazykhanov, V. U., Bobruk, E. V., Dubravina, A. A., and Valiev, R. Z. 2013. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC, Journal of Materials Science, 48(13), 4501-4509. Doi: 10.1007/s10853-013-7279-8.
  • Niendorf, T., Rubitschek, F., Maier, H. J., Canadinc, D., and Karaman, I. 2010. On the fatigue crack growth-microstructure relationship in ultrafine-grained interstitial-free steel, Journal of Materials Science, 45(17), 4813-4821. Doi: 10.1007/s10853-010-4511-7.
  • Oh-Ishi, K., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T. G. 1998. Communications - Optimizing the rotation conditions for grain refinement in equal-channel angular pressing, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 29(7), 2011-2013. Doi: 10.1007/s11661-998-0027-z.
  • Park, K. T., Kim, Y. S., Lee, J. G., and Shin, D. H. 2000. Thermal stability and mechanical properties of ultrafine grained low carbon steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 293(1-2), 165-172. Doi: 10.1016/S0921-5093(00)01220-X.
  • Raab, G. J., Valiev, R. Z., Lowe, T. C., and Zhu, Y. T. 2004. Continuous processing of ultrafine grained Al by ECAP-Conform, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 382(1-2), 30-34. Doi: 10.1016/j.msea.2004.04.021.
  • Roven, H. J., Liu, M. P., and Werenskiold, J. C. 2008. Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 483-8454-58. Doi: 10.1016/j.msea.2006.09.142.
  • Saravanan, M., Pillai, R. M., Pai, B. C., Brahmakumar, M., and Ravi, K. R. 2006. Equal channel angular pressing of pure aluminium - an analysis, Bulletin of Materials Science, 29(7), 679-684. Doi: -.
  • Saray, O., Purcek, G., Karaman, I., and Maier, H. J. 2013. Formability of Ultrafine-Grained Interstitial-Free Steels, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 44a(9), 4194-4206. Doi: 10.1007/s11661-013-1781-0.
  • Sekban, D. M. 2020. Eş Kanallı Açısal Presleme (EKAP) Uygulanan Gemi İnşa Çeliğinin İçyapı ve Mekanik Özelliklerinin İncelenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 240 -251. Doi: 10.21923/jesd.570536
  • Sekban, D. M., Aktarer, S. M., Zhang, H., Xue, P., Ma, Z. Y., and Purcek, G. 2017. Microstructural and Mechanical Evolution of a Low Carbon Steel by Friction Stir Processing, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 48a(8), 3869-3879. Doi: 10.1007/s11661-017-4157-z.
  • Semenova, I. P., Polyakov, A. V., Raab, G. I., Lowe, T. C., and Valiev, R. Z. 2012. Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform, Journal of Materials Science, 47(22), 7777-7781. Doi: 10.1007/s10853-012-6675-9.
  • Semenova, I. P., Valiev, R. Z., Yakushina, E. B., Salimgareeva, G. H., and Lowe, T. C. 2008. Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation, Journal of Materials Science, 43(23-24), 7354-7359. Doi: 10.1007/s10853-008-2984-4.
  • Sha, G., Wang, Y. B., Liao, X. Z., Duan, Z. C., Ringer, S. P., and Langdon, T. G. 2009. Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy, Acta Materialia, 57(10), 3123-3132. Doi: 10.1016/j.actamat.2009.03.017.
  • Shaeri, M. H., Shaeri, M., Ebrahimi, M., Salehi, M. T., and Seyyedein, S. H. 2016. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy, Progress in Natural Science-Materials International, 26(2), 182-191. Doi: 10.1016/j.pnsc.2016.03.003.
  • Silva, C. L. P., Oliveira, A. C., Costa, C. G. F., Figueiredo, R. B., Leite, M. D., Pereira, M. M., Lins, V. F. C., and Langdon, T. G. 2017. Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium, Journal of Materials Science, 52(10), 5992-6003. Doi: 10.1007/s10853-017-0835-x.
  • Sordi, V. L., Ferrante, M., Kawasaki, M., and Langdon, T. G. 2012. Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling, Journal of Materials Science, 47(22), 7870-7876. Doi: 10.1007/s10853-012-6593-x.
  • Sus-Ryszkowska, M., Wejrzanowski, T., Pakiela, Z., and Kurzydlowski, K. J. 2004. Microstructure of ECAP severely deformed iron and its mechanical properties, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 369(1-2), 151-156. Doi: 10.1016/j.msea.2003.10.318.
  • Ueno, H., Kakihata, K., Kaneko, Y., Hashimoto, S., and Vinogradov, A. 2011. Nanostructurization assisted by twinning during equal channel angular pressing of metastable 316L stainless steel, Journal of Materials Science, 46(12), 4276-4283. Doi: 10.1007/s10853-011-5303-4.
  • Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. 2000. Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45(2), 103-189. Doi: 10.1016/S0079-6425(99)00007-9.
  • Valiev, R. Z., and Langdon, T. G. 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 51(7), 881-981. Doi: 10.1016/j.pmatsci.2006.02.003.
  • Van Horn, K. R. 1968. Aluminum, American Society for Metals.
  • Venkatachalam, P., Kumar, S. R., Ravisankar, B., Paul, V. T., and Vijayalakshmi, M. 2010. Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Transactions of Nonferrous Metals Society of China, 20(10), 1822-1828. Doi:
  • Wang, C. T., Gao, N., Wood, R. J. K., and Langdon, T. G. 2011. Wear behavior of an aluminum alloy processed by equal-channel angular pressing, Journal of Materials Science, 46(1), 123-130. Doi: 10.1007/s10853-010-4862-0.
  • Williams, J. C., and Starke, E. A. 2003. Progress in structural materials for aerospace systems, Acta Material, 515775-5799. Doi: 10.1016/j.actamat.2003.08.023.
  • Wongsa-Ngam, J., Kawasaki, M., and Langdon, T. G. 2013. A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques, Journal of Materials Science, 48(13), 4653-4660. Doi: 10.1007/s10853-012-7072-0.
  • Xu, C., Dixon, W., Furukawa, M., Horita, Z., and Langdon, T. G. 2003. Developing superplasticity in a spray-cast aluminum 7034 alloy through equal-channel angular pressing, Materials Letters, 57(22-23), 3588-3592. Doi: 10.1016/S0167-577X(03)00130-7.
  • Xu, C., and Langdon, T. G. 2007. The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP, Journal of Materials Science, 42(5), 1542-1550. Doi: 10.1007/s10853-006-0899-5.
  • Zhang, Y., Wang, J. T., Cheng, C., and Liu, J. Q. 2008. Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing, Journal of Materials Science, 43(23-24), 7326-7330. Doi: 10.1007/s10853-008-2903-8.
  • Zhao, Y. H., Liao, X. Z., Jin, Z., Valiev, R. Z., and Zhu, Y. T. 2004. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Materialia, 52(15), 4589-4599. Doi: 10.1016/j.actamat.2004.06.017.
  • Zheng, L. J., Chen, C. Q., Zhou, T. T., Liu, P. Y., and Zeng, M. G. 2002. Structure and properties of ultrafine-grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn alloys fabricated by ECA pressing combined with thermal treatment, Materials Characterization, 49(5), 455-461. Doi: 10.1016/S1044-5803(03)00069-X.
  • Zhilyaev, A. P., Gubicza, J., Nurislamova, G., Revesz, A., Surinach, S., Baro, M. D., and Ungar, T. 2003. Microstructural characterization of ultrafine-grained nickel, Physica Status Solidi a-Applications and Materials Science, 198(2), 263-271. Doi: 10.1002/pssa.200306608.
  • Zhilyaev, A. P., Swaminathan, S., Gimazov, A. A., McNelley, T. R., and Langdon, T. G. 2008. An evaluation of microstructure and microhardness in copper subjected to ultra-high strains, Journal of Materials Science, 43(23-24), 7451-7456. Doi: 10.1007/s10853-008-2714-y.

INVESTIGATION OF MICROSTRUCTURAL AND HARDNESS CHANGES OF AA7075 ALLOY PROCESSED BY ECAP

Yıl 2021, , 1326 - 1338, 20.12.2021
https://doi.org/10.21923/jesd.913992

Öz

This study aims to examine the change in microstructural and hardness values AA7075 aluminum alloy, which is frequently preferred in the aviation industry by applying the Equal Channel Angular Pressing (ECAP) method. ECAP method, one of the plastic deformation methods, has been successfully carried out by applying 0.025mm/sec pressing speed and 200°C temperature for a different route (A, Bc, C) and the different number of passes (2, 4, 8). The characterization of the aluminum alloy obtained by applying ECAP process was carried out by optical microscope (OM), X-ray diffraction (XRD), and scanning electron microscope (SEM) analysis. Hardness tests have been applied to examine the mechanical properties of the material. The microstructures of the materials obtained as a result of the application were examined. It was observed that precipitation occurred in the AA7075 alloy depending on the applied temperature, pressing, and grain breakage. Moreover, it is seen that the grain size of the materials produced by the ECAP method has been reduced, and consequently the strength of the material increases. As a result of the ECAP process, it was seen that the existing phases were α-Al, -MgZn2, S-Al2CuMg, and Al7Cu2Fe. The grain size of 288.4 nm obtained after 8 repeated passes using the Bc route was the smallest grain size obtained.

Proje Numarası

FBA-2020-8351

Kaynakça

  • Baker, H. 1990. Handbook-Alloy Phase Diagrams ASM International, 3279-337. Doi:
  • Cardoso, K. R., Munoz-Morris, M. A., Lieblich, M., and Morris, D. 2014. Effect of Equal Channel Angular Pressing (ECAP) on Microstructure and Properties of Al-FeAlCr Intermetallic Phase Composites, Materials Research-Ibero-American Journal of Materials, 17(3), 775-780. Doi: 10.1590/S1516-14392014005000029
  • Duan, Z. C., Liao, X. Z., Kawasaki, M., Figueiredo, R. B., and Langdon, T. G. 2010. Influence of high-pressure torsion on microstructural evolution in an Al-Zn-Mg-Cu alloy, Journal of Materials Science, 45(17), 4621-4630. Doi: 10.1007/s10853-010-4400-0.
  • Figueiredo, R. B., and Langdon, T. G. 2010. Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, Journal of Materials Science, 45(17), 4827-4836. Doi: 10.1007/s10853-010-4589-y.
  • Furukawa, M., Berbon, P. B., Horita, Z., Nemoto, M., Tsenev, N. K., Valiev, R. Z., and Langdon, T. G. 1997. Production of ultrafine-grained metallic materials using an intense plastic straining technique, Towards Innovation in Superplasticity I, 233-2177-184. Doi: 10.4028/www.scientific.net/MSF.233-234.177.
  • Furukawa, M., Horita, Z., and Langdon, T. G. 2001. Developing ultrafine grain sizes using severe plastic deformation, Advanced Engineering Materials, 3(3), 121-125. Doi: 10.1002/1527-2648(200103)3:3<121::AID-ADEM121>3.0.CO;2-V.
  • Gubicza, J., Chinh, N. Q., Csanadi, T., Langdon, T. G., and Ungar, T. 2007. Microstructure and strength of severely deformed fcc metals, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 462(1-2), 86-90. Doi: 10.1016/j.msea.2006.02.455.
  • Hockauf, M., Meyer, L. W., Nickel, D., Alisch, G., Lampke, T., Wielage, B., and Kruger, L. 2008. Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing, Journal of Materials Science, 43(23-24), 7409-7417. Doi: 10.1007/s10853-008-2724-9.
  • Huang, Y., and Langdon, T. G. 2002. Characterization of deformation processes in a Zn-22% Al alloy using atomic force microscopy, Journal of Materials Science, 37(23), 4993-4998. Doi: Doi 10.1023/A:1021071228521.
  • Janecek, M., Cizek, J., Gubicza, J., and Vratna, J. 2012. Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation, Journal of Materials Science, 47(22), 7860-7869. Doi: 10.1007/s10853-012-6538-4.
  • Janecek, M., Yi, S., Kral, R., Vratna, J., and Kainer, K. U. 2010. Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP, Journal of Materials Science, 45(17), 4665-4671. Doi: 10.1007/s10853-010-4675-1.
  • Langdon, T. G. 2013. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Materialia, 61(19), 7035-7059. Doi: 10.1016/j.actamat.2013.08.018.
  • Lapovok, R., Estrin, Y., Popov, M. V., Rundell, S., and Williams, T. 2008. Enhanced superplasticity of magnesium alloy AZ31 obtained through equal-channel angular pressing with back-pressure, Journal of Materials Science, 43(23-24), 7372-7378. Doi: 10.1007/s10853-008-2685-z.
  • Lee, S., Furukawa, M., Horita, Z., and Langdon, T. G. 2003. Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 342(1-2), 294-301. Doi: 10.1016/S0921-5093(02)00319-2.
  • Li, Y., and Langdon, T. G. 2000. Equal-channel angular pressing of an Al-6061 metal matrix composite, Journal of Materials Science, 35(5), 1201-1204. Doi: Doi 10.1023/A:1004740504619.
  • Liu, T., Zhang, W., Wu, S. D., Jiang, C. B., Li, S. X., and Xu, Y. B. 2003. Mechanical properties of a two-phase alloy Mg-8%Li-1%Al processed by equal channel angular pressing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 360(1-2), 345-349. Doi: 10.1016/S0921-5093(03)00494-5.
  • Lugo, N., Llorca, N., Sunol, J. J., and Cabrera, J. M. 2010. Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing, Journal of Materials Science, 45(9), 2264-2273. Doi: 10.1007/s10853-009-4139-7.
  • Malek, P., Cieslar, M., and Islamgaliev, R. K. 2004. The influence of ECAP temperature on the stability of Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds, 378(1-2), 237-241. Doi: 10.1016/j.jallcom.2003.11.161.
  • Mao, J., Kang, S. B., and Park, J. O. 2005. Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing, Journal of Materials Processing Technology, 159(3), 314-320. Doi: 10.1016/j.jmatprotec.2004.05.020.
  • Mckenzie, P. W. J., Lapovok, R., and Estrin, Y. 2007. The influence of back pressure on ECAP processed. AA 6016: Modeling and experiment, Acta Materialia, 55(9), 2985-2993. Doi: 10.1016/j.actamat.2006.12.038.
  • Meyer, L. W., Sommer, K., Halle, T., and Hockauf, M. 2008. Crack growth in ultrafine-grained AA6063 produced by equal-channel angular pressing, Journal of Materials Science, 43(23-24), 7426-7431. Doi: 10.1007/s10853-008-2725-8.
  • Murashkin, M. Y., Sabirov, I., Kazykhanov, V. U., Bobruk, E. V., Dubravina, A. A., and Valiev, R. Z. 2013. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC, Journal of Materials Science, 48(13), 4501-4509. Doi: 10.1007/s10853-013-7279-8.
  • Niendorf, T., Rubitschek, F., Maier, H. J., Canadinc, D., and Karaman, I. 2010. On the fatigue crack growth-microstructure relationship in ultrafine-grained interstitial-free steel, Journal of Materials Science, 45(17), 4813-4821. Doi: 10.1007/s10853-010-4511-7.
  • Oh-Ishi, K., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T. G. 1998. Communications - Optimizing the rotation conditions for grain refinement in equal-channel angular pressing, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 29(7), 2011-2013. Doi: 10.1007/s11661-998-0027-z.
  • Park, K. T., Kim, Y. S., Lee, J. G., and Shin, D. H. 2000. Thermal stability and mechanical properties of ultrafine grained low carbon steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 293(1-2), 165-172. Doi: 10.1016/S0921-5093(00)01220-X.
  • Raab, G. J., Valiev, R. Z., Lowe, T. C., and Zhu, Y. T. 2004. Continuous processing of ultrafine grained Al by ECAP-Conform, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 382(1-2), 30-34. Doi: 10.1016/j.msea.2004.04.021.
  • Roven, H. J., Liu, M. P., and Werenskiold, J. C. 2008. Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 483-8454-58. Doi: 10.1016/j.msea.2006.09.142.
  • Saravanan, M., Pillai, R. M., Pai, B. C., Brahmakumar, M., and Ravi, K. R. 2006. Equal channel angular pressing of pure aluminium - an analysis, Bulletin of Materials Science, 29(7), 679-684. Doi: -.
  • Saray, O., Purcek, G., Karaman, I., and Maier, H. J. 2013. Formability of Ultrafine-Grained Interstitial-Free Steels, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 44a(9), 4194-4206. Doi: 10.1007/s11661-013-1781-0.
  • Sekban, D. M. 2020. Eş Kanallı Açısal Presleme (EKAP) Uygulanan Gemi İnşa Çeliğinin İçyapı ve Mekanik Özelliklerinin İncelenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 240 -251. Doi: 10.21923/jesd.570536
  • Sekban, D. M., Aktarer, S. M., Zhang, H., Xue, P., Ma, Z. Y., and Purcek, G. 2017. Microstructural and Mechanical Evolution of a Low Carbon Steel by Friction Stir Processing, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 48a(8), 3869-3879. Doi: 10.1007/s11661-017-4157-z.
  • Semenova, I. P., Polyakov, A. V., Raab, G. I., Lowe, T. C., and Valiev, R. Z. 2012. Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform, Journal of Materials Science, 47(22), 7777-7781. Doi: 10.1007/s10853-012-6675-9.
  • Semenova, I. P., Valiev, R. Z., Yakushina, E. B., Salimgareeva, G. H., and Lowe, T. C. 2008. Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation, Journal of Materials Science, 43(23-24), 7354-7359. Doi: 10.1007/s10853-008-2984-4.
  • Sha, G., Wang, Y. B., Liao, X. Z., Duan, Z. C., Ringer, S. P., and Langdon, T. G. 2009. Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy, Acta Materialia, 57(10), 3123-3132. Doi: 10.1016/j.actamat.2009.03.017.
  • Shaeri, M. H., Shaeri, M., Ebrahimi, M., Salehi, M. T., and Seyyedein, S. H. 2016. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy, Progress in Natural Science-Materials International, 26(2), 182-191. Doi: 10.1016/j.pnsc.2016.03.003.
  • Silva, C. L. P., Oliveira, A. C., Costa, C. G. F., Figueiredo, R. B., Leite, M. D., Pereira, M. M., Lins, V. F. C., and Langdon, T. G. 2017. Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium, Journal of Materials Science, 52(10), 5992-6003. Doi: 10.1007/s10853-017-0835-x.
  • Sordi, V. L., Ferrante, M., Kawasaki, M., and Langdon, T. G. 2012. Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling, Journal of Materials Science, 47(22), 7870-7876. Doi: 10.1007/s10853-012-6593-x.
  • Sus-Ryszkowska, M., Wejrzanowski, T., Pakiela, Z., and Kurzydlowski, K. J. 2004. Microstructure of ECAP severely deformed iron and its mechanical properties, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 369(1-2), 151-156. Doi: 10.1016/j.msea.2003.10.318.
  • Ueno, H., Kakihata, K., Kaneko, Y., Hashimoto, S., and Vinogradov, A. 2011. Nanostructurization assisted by twinning during equal channel angular pressing of metastable 316L stainless steel, Journal of Materials Science, 46(12), 4276-4283. Doi: 10.1007/s10853-011-5303-4.
  • Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. 2000. Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45(2), 103-189. Doi: 10.1016/S0079-6425(99)00007-9.
  • Valiev, R. Z., and Langdon, T. G. 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 51(7), 881-981. Doi: 10.1016/j.pmatsci.2006.02.003.
  • Van Horn, K. R. 1968. Aluminum, American Society for Metals.
  • Venkatachalam, P., Kumar, S. R., Ravisankar, B., Paul, V. T., and Vijayalakshmi, M. 2010. Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Transactions of Nonferrous Metals Society of China, 20(10), 1822-1828. Doi:
  • Wang, C. T., Gao, N., Wood, R. J. K., and Langdon, T. G. 2011. Wear behavior of an aluminum alloy processed by equal-channel angular pressing, Journal of Materials Science, 46(1), 123-130. Doi: 10.1007/s10853-010-4862-0.
  • Williams, J. C., and Starke, E. A. 2003. Progress in structural materials for aerospace systems, Acta Material, 515775-5799. Doi: 10.1016/j.actamat.2003.08.023.
  • Wongsa-Ngam, J., Kawasaki, M., and Langdon, T. G. 2013. A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques, Journal of Materials Science, 48(13), 4653-4660. Doi: 10.1007/s10853-012-7072-0.
  • Xu, C., Dixon, W., Furukawa, M., Horita, Z., and Langdon, T. G. 2003. Developing superplasticity in a spray-cast aluminum 7034 alloy through equal-channel angular pressing, Materials Letters, 57(22-23), 3588-3592. Doi: 10.1016/S0167-577X(03)00130-7.
  • Xu, C., and Langdon, T. G. 2007. The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP, Journal of Materials Science, 42(5), 1542-1550. Doi: 10.1007/s10853-006-0899-5.
  • Zhang, Y., Wang, J. T., Cheng, C., and Liu, J. Q. 2008. Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing, Journal of Materials Science, 43(23-24), 7326-7330. Doi: 10.1007/s10853-008-2903-8.
  • Zhao, Y. H., Liao, X. Z., Jin, Z., Valiev, R. Z., and Zhu, Y. T. 2004. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Materialia, 52(15), 4589-4599. Doi: 10.1016/j.actamat.2004.06.017.
  • Zheng, L. J., Chen, C. Q., Zhou, T. T., Liu, P. Y., and Zeng, M. G. 2002. Structure and properties of ultrafine-grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn alloys fabricated by ECA pressing combined with thermal treatment, Materials Characterization, 49(5), 455-461. Doi: 10.1016/S1044-5803(03)00069-X.
  • Zhilyaev, A. P., Gubicza, J., Nurislamova, G., Revesz, A., Surinach, S., Baro, M. D., and Ungar, T. 2003. Microstructural characterization of ultrafine-grained nickel, Physica Status Solidi a-Applications and Materials Science, 198(2), 263-271. Doi: 10.1002/pssa.200306608.
  • Zhilyaev, A. P., Swaminathan, S., Gimazov, A. A., McNelley, T. R., and Langdon, T. G. 2008. An evaluation of microstructure and microhardness in copper subjected to ultra-high strains, Journal of Materials Science, 43(23-24), 7451-7456. Doi: 10.1007/s10853-008-2714-y.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Güzide Meltem Lüle Şenöz 0000-0003-0870-1269

Doğacan Öztürk Bu kişi benim 0000-0001-9592-6663

Proje Numarası FBA-2020-8351
Yayımlanma Tarihi 20 Aralık 2021
Gönderilme Tarihi 12 Nisan 2021
Kabul Tarihi 14 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Lüle Şenöz, G. M., & Öztürk, D. (2021). INVESTIGATION OF MICROSTRUCTURAL AND HARDNESS CHANGES OF AA7075 ALLOY PROCESSED BY ECAP. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(4), 1326-1338. https://doi.org/10.21923/jesd.913992