Araştırma Makalesi
BibTex RIS Kaynak Göster

GERİ DÖNÜŞTÜRÜLMÜŞ BETON AGREGASI KULLANILARAK ÜRETİLEN HARÇLARDA YÜKSEK SICAKLIK ETKİSİNİN ARAŞTIRILMASI

Yıl 2021, Cilt: 9 Sayı: 1, 108 - 115, 30.03.2021
https://doi.org/10.21923/jesd.711026

Öz

Bu çalışmada, Geri Dönüştürülmüş Beton Agregasının (GDA) harç numunelerinde kullanımı ve yüksek sıcaklık altında harçlara etkisi araştırılmıştır. Harç numuneleri 40x40x160 mm boyutlarında üretilmiştir. İnce agrega haline getirilen GDA, harç üretiminde kullanılan kırma kum ile %25, %50 %75 ve %100 oranlarında yer değiştirme yapılmıştır. Harç numuneler 28 gün standart kür sonunda 200, 400, 600 ve 800 ⁰C sıcaklıklara maruz bırakılmıştır. Uygulanan sıcaklık sonrası ultrases geçiş hızı, ağırlık kayıpları, eğilme ve basınç dayanımları belirlenmiştir. GDA’nın artmasıyla birlikte harçların fiziksel ve mekanik özeliklerinde azalmalar meydana gelmiştir. Sıcaklığın artmasıyla birlikte de ultrases geçiş hızı, basınç ve eğilme dayanımlarında azalma görülmüştür.

Kaynakça

  • American Concrete Institute (ACI) Committee, ACI 555–R01, 2001. Removal and Reuse of Hardened Concrete, ACI, Farmington Hills (MI).
  • Arioz, O., 2007, Effects of elevated temperatures on properties of concrete, Fire Saf. J. 42, 516–522.
  • Biolzi, L., Cattaneo, S., Rosati, G., 2008. Evaluating residual properties of thermally damaged concrete, Cement Concr. Compos. 30, 907–916.
  • Chan, Y.N., Luo, X., Sun, W., 2000. Compressive strength and pore structure of high performance concrete after exposure to high temperature up to 800 ⁰C, Cement Concr. Res. 30, 247–251.
  • Fathifazl, G., Razaqpur, A.G., Isgor, O.B., Abbas, A., Fournier, B. and Foo, S., 2011. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cement and Concrete Composites, 33(10), pp.1026-1037.
  • Gaikwad, M.N., Gunjawate Shubham, A., Hole Gannesh, Y., Kadam Mangesh, M., Ghorpade Pratik, A., 2018. Experimental study on plastic waste as a course aggregate for structural concrete, Int. J. Recent Innov. Trends Comput. Commun. 6, 63–67.
  • Han, D., Yang, Y., Ying, C., Sierens, Z., Fan, H., Li, J., 2018. Efficient recycling and reuse of waste concrete on a construction site, Int. Concr. Abstr. Portal 326, 38.1–38.10.
  • Kwan, W.H., Ramli, M., Kam, K.J., Sulieman, M.Z., 2012. Influence of the amount of recycled coarse aggregate in concrete design and durability properties, Constr. Build. Mater. 26 (1) 565–573.
  • Khoury, G. A., 1996. Performance of Heated Concrete - Mechanical Properties, Contract NUC/56/3604A with Nuclear Installations Inspectorate, Imperial College, London, United Kingdom, August.
  • Medina, C., Zhu, W., Howind, T., de Rojas, M.I.S. and Frías, M., 2014. Influence of mixed recycled aggregate on the physica-mechanical properties of recycled concrete. Journal of Cleaner Production, 68, pp.216-225.
  • Meng, Y., Ling, T.Ch., Hung Mo, K., 2018. Recycling of wastes for value-added applications in concrete blocks: an overview, Resour. Conserv. Recycl. 138, 298–312.
  • Mostofinejad, D., Hosseini, S. M., Nosouhian, F., Ozbakkaloglu, T., Tehrani, B.N., 2020. Durability of concrete containing recycled concrete coarse and fine aggregates and milled waste glass in magnesium sulfate environment, J. Build. Eng. 29, 101-182.
  • Nagataki, S., Gokce, A., Saeki, T., Hisada, M., 2004. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates, Cement Concr. Res. 34(6), 965–971.
  • Jiang, Y., Ling, T.C., Shi, M., 2020. Strength enhancement of artificial aggregate prepared with waste concrete powder and its impact on concrete properties, J. Clean. Prod. 257.
  • Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L., 2001. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures, Cement and Concrete Research, 31, 1291-1300.
  • Teixeira, J.E.S.L., Schumacher, A.G., Pires, P.M., Castelo Branco, V.T.F., Martins, H.B., 2019. Expansion Level of Steel Slag Aggregate Effects on Both Material Properties and Asphalt Mixture Performance, Transp. Res. Rec. J. Transp. Res. Board. 2673, 506–515.
  • Topçu, I.B., Canbaz, M., 2004. Properties of concrete containing waste glass, Cement Concr. Res. 34, 267–274. TS EN 197-1, (2012), “Cement- Stage 1: General cements – component TSE”, Ankara, Türkiye.
  • TS EN 1008, (2003), “Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları TSE”, Ankara, Türkiye.
  • TS EN 196-1, (2016), “Çimento deney metotları-Bölüm 1: Dayanım tayini TSE”, Ankara, Türkiye.
  • TS EN 12390-4, (2019), “Beton-Sertleşmiş beton deneyleri-Bölüm 4: Basınç dayanım Deney makinelerinin özellikleri TSE”, Ankara, Türkiye.
  • TS EN 1170-6, (1999), “Ön yapımlı beton mamuller-Cam elyaf takviyeli çimento (ctc) deney metodu-Bölüm 6: Suya daldırma yoluyla su emme ve kuru yoğunluk tayini TSE”, Ankara, Türkiye.
  • TS EN 12504-4, (2012), “Beton Deneyleri-Bölüm 4:Ultrases Geçiş Hızının Tayini, TSE,” Ankara, Türkiye.
  • Valadares, F., Bravo, M., de Brito, J., 2012. Concrete with used tire rubber aggregates: mechanical performance, ACI Mater. J. 109–M26, 283–292.
  • Uygunoglu, T., Topçu, İB, Çelik, A.G., 2014, Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability, Journal of Cleaner Production, Vol. 84, 691-700.
  • Wang, C., Xiao, J., 2018. Evaluation of the stress-strain behaviour of confined recycled aggregate concrete under monotonic dynamic loadings, Cem. Concr. Compos. 87, 149–163.
  • Wang, Y., Geng, Y., Chang, Y. Zhou, C., 2018. Time-dependent behaviour of recycled concrete filled steel tubes using RCA from different parent waste material, Constr. Build. Mater. 193, 230–243.
  • Xing, Z., Beaucour, A.-L., Hebert, R., 2011. Noumowe, A., Ledesert, B., Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature, Cement Concr. Res. 41, 392–402.
  • Xuan, D., Shui, Z., 2010. Temperature dependence of thermal induced mesocracks around limestone aggregate in normal concrete, Fire Mater.: Int. J. 34, 137–146.
  • Yu, H., Zhu, Z., Zhang, Z., Yu, J., Oeser, M., Wang, D., 2019. Recycling waste packaging tape into bituminous mixtures towards enhanced mechanical properties and environmental benefits, J. Clean. Prod. 229, 22–31.
  • Uysal, A., 2004. Yüksek Sicaklığın Beton Üzerindeki Etkileri, Yüksek lisans Tezi, İstanbul Teknik Üniversite, İstanbul.

INVESTIGATION OF THE HIGH TEMPERATURE EFFECT ON MORTARS PRODUCED BY USING RECYCLED CONCRETE AGGREGATE

Yıl 2021, Cilt: 9 Sayı: 1, 108 - 115, 30.03.2021
https://doi.org/10.21923/jesd.711026

Öz

In this study, the use of Recycled Concrete Aggregate (RCA) in mortar samples and their effects on mortars under high temperature were investigated. Mortar samples were produced in the dimensions of 40x40x160 mm. GDA, which has been converted into fine aggregate, has been replaced with 25%, 50% 75% and 100% of the sand used in mortar production. Mortar samples were exposed to 200, 400, 600 and 800 ⁰C after 28 days of standard curing. After the applied temperature, ultrasonic pulse velocity, weight losses, flexural and compressive strengths were determined. With the increase of RCA, there was a decrease in the physical and mechanical properties of the mortars. Along with the increase in temperature, ultrasonic pulse velocity, compressive and flexural strengths were also decreased.

Kaynakça

  • American Concrete Institute (ACI) Committee, ACI 555–R01, 2001. Removal and Reuse of Hardened Concrete, ACI, Farmington Hills (MI).
  • Arioz, O., 2007, Effects of elevated temperatures on properties of concrete, Fire Saf. J. 42, 516–522.
  • Biolzi, L., Cattaneo, S., Rosati, G., 2008. Evaluating residual properties of thermally damaged concrete, Cement Concr. Compos. 30, 907–916.
  • Chan, Y.N., Luo, X., Sun, W., 2000. Compressive strength and pore structure of high performance concrete after exposure to high temperature up to 800 ⁰C, Cement Concr. Res. 30, 247–251.
  • Fathifazl, G., Razaqpur, A.G., Isgor, O.B., Abbas, A., Fournier, B. and Foo, S., 2011. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cement and Concrete Composites, 33(10), pp.1026-1037.
  • Gaikwad, M.N., Gunjawate Shubham, A., Hole Gannesh, Y., Kadam Mangesh, M., Ghorpade Pratik, A., 2018. Experimental study on plastic waste as a course aggregate for structural concrete, Int. J. Recent Innov. Trends Comput. Commun. 6, 63–67.
  • Han, D., Yang, Y., Ying, C., Sierens, Z., Fan, H., Li, J., 2018. Efficient recycling and reuse of waste concrete on a construction site, Int. Concr. Abstr. Portal 326, 38.1–38.10.
  • Kwan, W.H., Ramli, M., Kam, K.J., Sulieman, M.Z., 2012. Influence of the amount of recycled coarse aggregate in concrete design and durability properties, Constr. Build. Mater. 26 (1) 565–573.
  • Khoury, G. A., 1996. Performance of Heated Concrete - Mechanical Properties, Contract NUC/56/3604A with Nuclear Installations Inspectorate, Imperial College, London, United Kingdom, August.
  • Medina, C., Zhu, W., Howind, T., de Rojas, M.I.S. and Frías, M., 2014. Influence of mixed recycled aggregate on the physica-mechanical properties of recycled concrete. Journal of Cleaner Production, 68, pp.216-225.
  • Meng, Y., Ling, T.Ch., Hung Mo, K., 2018. Recycling of wastes for value-added applications in concrete blocks: an overview, Resour. Conserv. Recycl. 138, 298–312.
  • Mostofinejad, D., Hosseini, S. M., Nosouhian, F., Ozbakkaloglu, T., Tehrani, B.N., 2020. Durability of concrete containing recycled concrete coarse and fine aggregates and milled waste glass in magnesium sulfate environment, J. Build. Eng. 29, 101-182.
  • Nagataki, S., Gokce, A., Saeki, T., Hisada, M., 2004. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates, Cement Concr. Res. 34(6), 965–971.
  • Jiang, Y., Ling, T.C., Shi, M., 2020. Strength enhancement of artificial aggregate prepared with waste concrete powder and its impact on concrete properties, J. Clean. Prod. 257.
  • Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L., 2001. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures, Cement and Concrete Research, 31, 1291-1300.
  • Teixeira, J.E.S.L., Schumacher, A.G., Pires, P.M., Castelo Branco, V.T.F., Martins, H.B., 2019. Expansion Level of Steel Slag Aggregate Effects on Both Material Properties and Asphalt Mixture Performance, Transp. Res. Rec. J. Transp. Res. Board. 2673, 506–515.
  • Topçu, I.B., Canbaz, M., 2004. Properties of concrete containing waste glass, Cement Concr. Res. 34, 267–274. TS EN 197-1, (2012), “Cement- Stage 1: General cements – component TSE”, Ankara, Türkiye.
  • TS EN 1008, (2003), “Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları TSE”, Ankara, Türkiye.
  • TS EN 196-1, (2016), “Çimento deney metotları-Bölüm 1: Dayanım tayini TSE”, Ankara, Türkiye.
  • TS EN 12390-4, (2019), “Beton-Sertleşmiş beton deneyleri-Bölüm 4: Basınç dayanım Deney makinelerinin özellikleri TSE”, Ankara, Türkiye.
  • TS EN 1170-6, (1999), “Ön yapımlı beton mamuller-Cam elyaf takviyeli çimento (ctc) deney metodu-Bölüm 6: Suya daldırma yoluyla su emme ve kuru yoğunluk tayini TSE”, Ankara, Türkiye.
  • TS EN 12504-4, (2012), “Beton Deneyleri-Bölüm 4:Ultrases Geçiş Hızının Tayini, TSE,” Ankara, Türkiye.
  • Valadares, F., Bravo, M., de Brito, J., 2012. Concrete with used tire rubber aggregates: mechanical performance, ACI Mater. J. 109–M26, 283–292.
  • Uygunoglu, T., Topçu, İB, Çelik, A.G., 2014, Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability, Journal of Cleaner Production, Vol. 84, 691-700.
  • Wang, C., Xiao, J., 2018. Evaluation of the stress-strain behaviour of confined recycled aggregate concrete under monotonic dynamic loadings, Cem. Concr. Compos. 87, 149–163.
  • Wang, Y., Geng, Y., Chang, Y. Zhou, C., 2018. Time-dependent behaviour of recycled concrete filled steel tubes using RCA from different parent waste material, Constr. Build. Mater. 193, 230–243.
  • Xing, Z., Beaucour, A.-L., Hebert, R., 2011. Noumowe, A., Ledesert, B., Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature, Cement Concr. Res. 41, 392–402.
  • Xuan, D., Shui, Z., 2010. Temperature dependence of thermal induced mesocracks around limestone aggregate in normal concrete, Fire Mater.: Int. J. 34, 137–146.
  • Yu, H., Zhu, Z., Zhang, Z., Yu, J., Oeser, M., Wang, D., 2019. Recycling waste packaging tape into bituminous mixtures towards enhanced mechanical properties and environmental benefits, J. Clean. Prod. 229, 22–31.
  • Uysal, A., 2004. Yüksek Sicaklığın Beton Üzerindeki Etkileri, Yüksek lisans Tezi, İstanbul Teknik Üniversite, İstanbul.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Emriye Çınar

Behcet Dündar 0000-0003-0724-9469

Tayfun Uygunoğlu 0000-0003-4382-8257

Yayımlanma Tarihi 30 Mart 2021
Gönderilme Tarihi 29 Mart 2020
Kabul Tarihi 24 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 1

Kaynak Göster

APA Çınar, E., Dündar, B., & Uygunoğlu, T. (2021). GERİ DÖNÜŞTÜRÜLMÜŞ BETON AGREGASI KULLANILARAK ÜRETİLEN HARÇLARDA YÜKSEK SICAKLIK ETKİSİNİN ARAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(1), 108-115. https://doi.org/10.21923/jesd.711026