Araştırma Makalesi
BibTex RIS Kaynak Göster

NUMERICAL ANALYSIS OF MELTING AND SOLIDIFICATION PROCESSES OF RT35 PARAFIN WAX IN THERMAL ENERGY STORAGE SYSTEM USING EXHAUST GASES

Yıl 2021, Cilt: 9 Sayı: 2, 520 - 534, 20.06.2021
https://doi.org/10.21923/jesd.852705

Öz

In this paper, a numerical analysis of the melting and solidification processes of the thermal energy storage (TES) system designed for the exhaust waste heat recovery of a spark-ignition engine was performed. Paraffin wax, which stores thermal energy as latent heat and is commercially identified with the code RT35, is used as phase change material in the thermal energy storage (TES) system. Two closed-loop fluid circulation system was designed consisting, two heat exchangers for the TES system. The first of the heat exchangers were used to the exhaust path of the SI engine for waste heat recovery, and the other was used for charging and discharging waste heat energy in the PCM container. In the PCM container, two serpentine type heat exchangers are positioned one inside the other to be used in the melting and solidification processes of the RT35. In the numerical analyses, the experimental exhaust gas temperature and flow rate values of a single-cylinder SI engine were used. As a result of the numerical analysis, it has been determined that 1136 kJ energy can be stored as latent heat energy in the PCM container at 13375 sec by 98% liquid fraction, while in the heat discharge process, 945 kJ of energy can be released at 49775 sec by 18% liquid fraction.

Kaynakça

  • ANSYS FLUENT, 14.5, 2014. User's and theory guide. Canonsburg, Pennsylvania, USA: ANSYS, Inc.
  • Ateş, D., 2019. İçten Yanmalı Motorun Egzoz Atık Isı Enerjisinin FDM Yardımıyla Depolanması ve Yeniden Kullanımının HAD Analizi. Süleyman Demirel University, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 253s, Isparta.
  • Bouhal, T., Fertahi, S.D., Kousksou, T., Jamil, A. 2018. CFD thermal energy storage enhancement of PCM filling a cylindrical cavity equipped with submerged heating sources. Journal of Energy Storage, 18 (2018) 360–370.
  • Cui, Y., Xie, J., Liu, J., Wang, J., Chen, S. 2011. A review on phase change material application in building. Advanced in Mechanical Engineering, 9(6), 1-15.
  • Ebadi, S., Tasnim, S.H., Aliabadi, A.A. and Mahmud, S., 2018. Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification, Energy Conversion and Management,166, 241-259.
  • Fleischer, A.S., 2015. Thermal energy storage using phase change materials: fundamentals and applications. Springer, London, 93p.
  • Gürbüz, H, Ateş, D., 2020. A numerical study on processes of charge and discharge of latent heat energy storage system using RT27 paraffin wax for exhaust waste heat recovery in a SI engine, International Journal of Automotive Science and Technology, 4 (4), 314-327.
  • Hoseini, S.S., Najafi, G., Ghobadian, B., Mamat, R., Sidik, N.A.C., Azmi, W H., 2017. The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renewable and Sustainable Energy Reviews, 73, 307-331.
  • John, M.R.W., Subramanian, L.R.G., 2019. Performance Analysis of Custom-Designed Heat Exchanger and Latent Heat Thermal Energy Storage System for Diesel Engine Exhaust Waste, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43 (1), 679-S694.
  • Kant, K., Shukla, A., Sharma, A., Biwole, P.H. 2018. Melting and solidification behaviour of phase change materials with cyclic heating and cooling. Journal of Energy Storage, 15, 274-282.
  • Karasu, H., Dincer, I., 2018. Analysis and Efficiency Assessment of Direct Conversion of Wind Energy into Heat Using Electromagnetic Induction and Thermal Energy Storage, Journal of Energy Resources Technology, 140 (7): 071201
  • Kauranen, P., Elonen, T., Wikström, L., Heikkinen, J., Laurikko, J. 2010. Temperature optimisation of a diesel engine using exhaust gas heat recovery and thermal energy storage (diesel engine with thermal energy storage). Applied Thermal Engineering, 30(6-7), 631-638.
  • Liu, M., Y. Sun, and F. Bruno., 2020. A Review of Numerical Modelling of High-Temperature Phase Change Material Composites for Solar Thermal Energy Storage, Journal of Energy Storage, 29, 101378.
  • Mahdi, J.M., Lohrasbi, S., Ganji, D.D., Nsofor, E.C. 2018. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. International Journal of Heat and Mass Transfer, 124, 663-676.
  • Mahdi, J.M., Lohrasbi, S., Ganji, D.D., Nsofor, E.C. 2019. Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles. Energy conversion and management, 180, 949-961.
  • Mollenhauer, E., Christidis, A., Tsatsaronis, G., 2018. Increasing the Flexibility of Combined Heat and Power Plants with Heat Pumps and Thermal Energy Storage, Journal of Energy Resources Technology, 140(2): 020907.
  • Moran, M.J., Shapiro, H.N., Boettner, D.D., Bailey, M.B. 2010. Fundamentals of engineering thermodynamics. John Wiley&Sons, USA, 825s.
  • Oró, E., Jong, E.d., Cabeza, L.F. 2015. Experimental analysis of a car incorporating phase change material. Journal of Energy Storage, 7, 131-135.
  • Pandiyarajan, V., Pandian, M.C., Malan, E., Velraj, R., Seeniraj, R.V. 2011. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Applied Energy, 88(1), 77-87.
  • Perry, R.H. 1984. Perry's Chemical Engineers Handbook, 6th edition, McGraw-Hill, New York, 2640.
  • Rahman, A., Razzak, F., Afroz, R., Mohiuddin, A.K.M., Hawlader, M.N.A. 2015. Power generation from waste of IC engines. Renewable and sustainable energy reviews, 51, 382-395.
  • Sarı, A., Karaipekli, A., 2007. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 27(8-9), 1271-1277.
  • Scupi, A.A. 2016. The use of numerical programs in research and academic institutions. In IOP Conference Series: Materials Science and Engineering, 145(8), 082002.
  • Shahsavar, A., Ali, H.M., Mahani, R, Talebizadehsardari, P., 2020. Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system. Journal of Thermal Analysis and Calorimetry, 141, 1785-1799.
  • Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable energy reviews, 13(2), 318-345.
  • Sunku Prasad, J., Anandalakshmi, R., Muthukumar, P. 2020. Numerical investigation on conventional and PCM heat sinks under constant and variable heat flux conditions. Clean Techn Environ Policy https://doi.org/10.1007/s10098-020-01829-8.
  • Tiari, S., Qiu, S. and Mahdavi, M., 2015. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material, Energy Conversion and Management, 89, 833-842.
  • Topalcı, Ü, Gürbüz, H, Akçay, H, Demi̇rtürk, S., 2020. Buji ateşlemeli bir motorda egzoz atik ısı geri kazanımı için termoelektrik jeneratör modelinin geliştirilmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 8 (2), 582-596.
  • Wu, J., Feng, Y., Liu, C., Li, H., 2018. Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater. Applied Thermal Engineering, 142, 644-655.
  • Yang, X., Li Yang, Lu, Z., Zhang, L., Zhang, Q., Jin, L. 2016. Thermal and Fluid Characteristics of a Latent Heat Thermal Energy Storage Unit, Publication: Energy Procedia, 104, 425-430.
  • Yang, Y.-T., Wang, Y.-H., 2012. Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change Material. International Journal of Thermal Sciences, 51, 155-162.
  • Zalba, B., Marın, J. M., Cabeza, L. F., Mehling, H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied thermal engineering, 23(3), 251-283.

EGZOZ GAZLARINI KULLANAN TERMAL ENERJİ DEPOLAMA SİSTEMİNDE RT35 PARAFİN MUMUNUN ERİME VE KATILAŞMA SÜREÇLERİNİN SAYISAL ANALİZİ

Yıl 2021, Cilt: 9 Sayı: 2, 520 - 534, 20.06.2021
https://doi.org/10.21923/jesd.852705

Öz

Bu çalışmada buji ateşlemeli bir motorunun egzoz atık ısı enerjisinin geri kazanımı için tasarlanan termal enerji depolama (TED) sisteminin erime ve katılaşma süreçlerinin sayısal analizleri gerçekleştirilmiştir. TED sisteminde termal enerjiyi gizli ısı olarak depolayan ve ticari olarak RT35 koduyla tanımlanan parafin mumu faz değişim malzemesi (FDM) olarak kullanılmıştır. TED sistemi için iki ısı eşanjöründen oluşan iki kapalı devre sıvı sirkülasyon sistemi tasarlanmıştır. Isı eşanjörlerinden ilki, atık ısı geri kazanımı için buji ateşlemeli motorunun egzoz yoluna, diğeri ise FDM kabında atık ısı enerjisinin şarjı ve boşaltılması için kullanıldı. FDM kabı içerisinde, RT35’in erime ve katılaşma süreçlerinde kullanılmak üzere serpantin tipi iki adet ısı eşanjörü iç içe konumlandırılmış. Sayısal analizlerde, tek silindirli ve buji ateşlemeli bir motorda gerçekleştirilen deneysel çalışmadan elde edilen egzoz gazının sıcaklık ve debi değeri kullanılmıştır. Sayısal analizler sonucunda, tasarlanan gizli ısı TED sistemi ve kabul edilen sınır şartları altında RT35’in erime işleminde 13375.sn’de %98 sıvı oranına ulaşılarak 1136 kJ’ün gizli ısı enerjisi olarak depolanabildiği, katılaşma işleminde ise 49775.sn’de %18 sıvı oranı ile 945 kJ’lük enerjisinin geri salınabildiği tespit edilmiştir.

Kaynakça

  • ANSYS FLUENT, 14.5, 2014. User's and theory guide. Canonsburg, Pennsylvania, USA: ANSYS, Inc.
  • Ateş, D., 2019. İçten Yanmalı Motorun Egzoz Atık Isı Enerjisinin FDM Yardımıyla Depolanması ve Yeniden Kullanımının HAD Analizi. Süleyman Demirel University, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 253s, Isparta.
  • Bouhal, T., Fertahi, S.D., Kousksou, T., Jamil, A. 2018. CFD thermal energy storage enhancement of PCM filling a cylindrical cavity equipped with submerged heating sources. Journal of Energy Storage, 18 (2018) 360–370.
  • Cui, Y., Xie, J., Liu, J., Wang, J., Chen, S. 2011. A review on phase change material application in building. Advanced in Mechanical Engineering, 9(6), 1-15.
  • Ebadi, S., Tasnim, S.H., Aliabadi, A.A. and Mahmud, S., 2018. Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification, Energy Conversion and Management,166, 241-259.
  • Fleischer, A.S., 2015. Thermal energy storage using phase change materials: fundamentals and applications. Springer, London, 93p.
  • Gürbüz, H, Ateş, D., 2020. A numerical study on processes of charge and discharge of latent heat energy storage system using RT27 paraffin wax for exhaust waste heat recovery in a SI engine, International Journal of Automotive Science and Technology, 4 (4), 314-327.
  • Hoseini, S.S., Najafi, G., Ghobadian, B., Mamat, R., Sidik, N.A.C., Azmi, W H., 2017. The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renewable and Sustainable Energy Reviews, 73, 307-331.
  • John, M.R.W., Subramanian, L.R.G., 2019. Performance Analysis of Custom-Designed Heat Exchanger and Latent Heat Thermal Energy Storage System for Diesel Engine Exhaust Waste, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43 (1), 679-S694.
  • Kant, K., Shukla, A., Sharma, A., Biwole, P.H. 2018. Melting and solidification behaviour of phase change materials with cyclic heating and cooling. Journal of Energy Storage, 15, 274-282.
  • Karasu, H., Dincer, I., 2018. Analysis and Efficiency Assessment of Direct Conversion of Wind Energy into Heat Using Electromagnetic Induction and Thermal Energy Storage, Journal of Energy Resources Technology, 140 (7): 071201
  • Kauranen, P., Elonen, T., Wikström, L., Heikkinen, J., Laurikko, J. 2010. Temperature optimisation of a diesel engine using exhaust gas heat recovery and thermal energy storage (diesel engine with thermal energy storage). Applied Thermal Engineering, 30(6-7), 631-638.
  • Liu, M., Y. Sun, and F. Bruno., 2020. A Review of Numerical Modelling of High-Temperature Phase Change Material Composites for Solar Thermal Energy Storage, Journal of Energy Storage, 29, 101378.
  • Mahdi, J.M., Lohrasbi, S., Ganji, D.D., Nsofor, E.C. 2018. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. International Journal of Heat and Mass Transfer, 124, 663-676.
  • Mahdi, J.M., Lohrasbi, S., Ganji, D.D., Nsofor, E.C. 2019. Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles. Energy conversion and management, 180, 949-961.
  • Mollenhauer, E., Christidis, A., Tsatsaronis, G., 2018. Increasing the Flexibility of Combined Heat and Power Plants with Heat Pumps and Thermal Energy Storage, Journal of Energy Resources Technology, 140(2): 020907.
  • Moran, M.J., Shapiro, H.N., Boettner, D.D., Bailey, M.B. 2010. Fundamentals of engineering thermodynamics. John Wiley&Sons, USA, 825s.
  • Oró, E., Jong, E.d., Cabeza, L.F. 2015. Experimental analysis of a car incorporating phase change material. Journal of Energy Storage, 7, 131-135.
  • Pandiyarajan, V., Pandian, M.C., Malan, E., Velraj, R., Seeniraj, R.V. 2011. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Applied Energy, 88(1), 77-87.
  • Perry, R.H. 1984. Perry's Chemical Engineers Handbook, 6th edition, McGraw-Hill, New York, 2640.
  • Rahman, A., Razzak, F., Afroz, R., Mohiuddin, A.K.M., Hawlader, M.N.A. 2015. Power generation from waste of IC engines. Renewable and sustainable energy reviews, 51, 382-395.
  • Sarı, A., Karaipekli, A., 2007. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 27(8-9), 1271-1277.
  • Scupi, A.A. 2016. The use of numerical programs in research and academic institutions. In IOP Conference Series: Materials Science and Engineering, 145(8), 082002.
  • Shahsavar, A., Ali, H.M., Mahani, R, Talebizadehsardari, P., 2020. Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system. Journal of Thermal Analysis and Calorimetry, 141, 1785-1799.
  • Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable energy reviews, 13(2), 318-345.
  • Sunku Prasad, J., Anandalakshmi, R., Muthukumar, P. 2020. Numerical investigation on conventional and PCM heat sinks under constant and variable heat flux conditions. Clean Techn Environ Policy https://doi.org/10.1007/s10098-020-01829-8.
  • Tiari, S., Qiu, S. and Mahdavi, M., 2015. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material, Energy Conversion and Management, 89, 833-842.
  • Topalcı, Ü, Gürbüz, H, Akçay, H, Demi̇rtürk, S., 2020. Buji ateşlemeli bir motorda egzoz atik ısı geri kazanımı için termoelektrik jeneratör modelinin geliştirilmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 8 (2), 582-596.
  • Wu, J., Feng, Y., Liu, C., Li, H., 2018. Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater. Applied Thermal Engineering, 142, 644-655.
  • Yang, X., Li Yang, Lu, Z., Zhang, L., Zhang, Q., Jin, L. 2016. Thermal and Fluid Characteristics of a Latent Heat Thermal Energy Storage Unit, Publication: Energy Procedia, 104, 425-430.
  • Yang, Y.-T., Wang, Y.-H., 2012. Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change Material. International Journal of Thermal Sciences, 51, 155-162.
  • Zalba, B., Marın, J. M., Cabeza, L. F., Mehling, H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied thermal engineering, 23(3), 251-283.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği, Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Habib Gürbüz 0000-0001-5157-6227

Durukan Ateş 0000-0002-6604-7384

Yayımlanma Tarihi 20 Haziran 2021
Gönderilme Tarihi 3 Ocak 2021
Kabul Tarihi 21 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Gürbüz, H., & Ateş, D. (2021). EGZOZ GAZLARINI KULLANAN TERMAL ENERJİ DEPOLAMA SİSTEMİNDE RT35 PARAFİN MUMUNUN ERİME VE KATILAŞMA SÜREÇLERİNİN SAYISAL ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(2), 520-534. https://doi.org/10.21923/jesd.852705