AÇIK BİR KAVİTE İÇİNDE DÖNEN SİLİNDİRLE AKTİF AKIŞ KONTROLÜ: ISI TRANSFERİ VE AKIŞ ÖZELLİKLERİNİN SAYISAL İNCELENMESİ
Yıl 2021,
Cilt: 9 Sayı: 4, 1348 - 1371, 20.12.2021
İrem Dalgıç
Nehir Tokgöz
,
Coskun Özalp
Öz
Kavite akışı içerisinde dönen adyabatik bir silindir varlığının akış yapısı ve ısı transfer üzerindeki etkisinin incelendiği sayısal bir çalışma gerçekleştirilmiştir. Çalışmada uzunluk ve derinlik oranı (D/L) 2 olan açık bir kavite içerisine 0.025m çapa sahip adyabatik bir silindir yerleştirilmiştir. Silindir kavite içerisinde 11 farklı konuma yerleştirilmiş ve bu konumlarda 6 farklı dönme hızı tanımlanmıştır. Silindir çapı ile tanımlanan Reynolds sayısı 10000 olarak belirlenmiştir. Isı transfer analizi için kavite duvarlarına 10000 W/m^2 değerinde sabit ısı akısı uygulanmış, sonlu hacimler yöntemi kullanılarak çözümlemeler yapılmıştır. Çalışmanın sonuçları kavite içerisinde silindirin kullanılmadığı boş kavite akışı olarak ifade edilmiş olan durum dikkate alınarak incelenmiştir. Boş kavite akışına nispeten silindire farklı konumlarda tanımlanan dönme hızları akış yapısını ve ısı transferini iyileştirici yönde etki sağladığı gözlemlenmiştir.
Destekleyen Kurum
Osmaniye Korkut Ata Üniversitesi Bilimsel Araştırma Projeleri Birim
Proje Numarası
OKÜBAP-2019-PT3-022
Teşekkür
Bu çalışma Osmaniye Korkut Ata Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından OKÜBAP-2019-PT3-022 nolu proje kapsamında desteklenmiştir.
Kaynakça
- Ahuja K., Mendoza, J. 1995. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes.
- Bhatti, A., Aung W., 1984. Finite Difference Analysis of Laminar Separated Forced Convection in Cavities, Journal of Heat Transfer, 106(1), 49–54.
- Billah, M.M., Rahman, M.M., Sharif, U.M., Rahim, N.A., Saidur, R., Hasanuzzaman, M., 2011. Numerical Analysis of Fluid Flow Due to Mixed Convection in a Lid-Driven Cavity Having a Heated Circular Hollow Cylinder, International Communications in Heat and Mass Transfer, 38(8), 1093–1103.
- Çengel Y., Cimbala J.M., 2008. Akışkanlar Mekaniği Temelleri ve Uygulamaları, İzmir Güven Kitabevi, İzmir Rockwell, D., Naudascher, E., 1978. Review Self Sustaining Oscillations of Flow Past Cavities, Journal of Fluids Engineering, Transactions of the ASME, 100(2), 152-65.
- Doğan, F.B., 2014. Eş merkezli dönen iki silindir arasında oluşan Taylor ve Von Karman vortekslerinin hesaplamalı akışkanlar dinamiği ile incelenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Ankara, 110.
- Franke, M.E., Carr D.L., 1975. Effect of Geometry on Open Cavity Flow-Induced Pressure Oscillations, 2nd Aeroacoustics Conference, 492.
- Kumar, A., Dhiman, A.K., 2012. Effect of a Circular Cylinder on Separated Forced Convection at a Backward-Facing Step, International Journal of Thermal Sciences, 52(1),176–85.
- Laouira, H., Mebarek-Oudina, F., Hussein, A.K., Kolsi, L., Merah, A., Obai, Y., 2020. Heat Transfer inside a Horizontal Channel with an Open Trapezoidal Enclosure Subjected to a Heat Source of Different Lengths, Heat Transfer - Asian Research, 49(1), 406–23.
- Madi, A.F., Mataoui, A., Bouahmed, Z., 2011. Influence of Upstream Flow Characteristics on the Reattachment Phenomenon in Shallow Cavities, Thermal Science, 15(3) 721–34.
- Manovski, P., Giacobello, M., Soria, J., 2007. Particle Image Velocimetry Measurements over an Aerodynamically Open Two-Dimensional Cavity, in Proceedings of the 16th Australasian Fluid Mechanics Conference, 16AFMC, 677–83.
- Mesalhy, O.M., Abdel Aziz, S.S., El-Sayed, M.M., 2010. Flow and Heat Transfer over Shallow Cavities, International Journal of Thermal Sciences, 49(3), 514–21.
- Richards, R.F., Young, M.F., Haiad, J.C., 1987. Turbulent Forced Convection Heat Transfer from a Bottom Heated Open Surface Cavity, International Journal of Heat and Mass Transfer, 30(11), 2281–87.
- Sarohia, V., Massier, P.F., 1977. Control of Cavity Noise, Journal of Aircraft, 14(9), 833-37.
- Selimefendigil, F., Öztop, H.F., 2014. Numerical Study and Identification of Cooling of Heated Blocks in Pulsating Channel Flow with a Rotating Cylinder, International Journal of Thermal Sciences, 79, 132–45.
- Suponitsky, V., Avital, E., Gaster, M., 2005. On Three-Dimensionality and Control of Incompressible Cavity Flow, Physics of Fluids, 17(10).
- Şimşek, O., (2020). Üstten Akışlı Kapak Akımının Sayısal Modellemesi, Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 808-819.
- Şimşek, O., Gümüş, V., Özlük, A., (2021). Şaşırtmalı Mahmuzların Üç Boyutlu Sayısal Analizi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 187-198.
- Ukeiley, L., Murray, N., 2005. Velocity and Surface Pressure Measurements in an Open Cavity, Experiments in Fluids, 38(5), 656–71.
- Zdanski, P.S.B., Ortega, M.A., Nide, G.C.R., Fico, Jr., 2006. On the Flow over Cavities of Large Aspect Ratio: A Physical Analysis, International Communications in Heat and Mass Transfer, 33(4), 458–66.
ACTIVE FLOW CONTROL INSIDE AN OPEN CAVITY WITH ROTATING CYLINDER: NUMERICAL INVESTIGATION OF HEAT TRANSFER AND FLOW CHARACTERISTICS
Yıl 2021,
Cilt: 9 Sayı: 4, 1348 - 1371, 20.12.2021
İrem Dalgıç
Nehir Tokgöz
,
Coskun Özalp
Öz
A numerical study is carried out to examine the effect of the presence of an adiabatic cylinder rotating in the cavity flow on the flow structure and heat transfer. In the study, an adiabatic cylinder with a diameter of 0.025 m is placed in an open cavity with a length to depth ratio (D/L) of 2. The cylinder is placed in 11 different positions in the cavity and 6 different rotational speeds are defined in these positions. The Reynolds number defined by the cylinder diameter is determined as 10000. For heat transfer analysis, a constant heat flux of 10000 W/m2 is applied to the cavity walls and analyzes are made using the finite volume method. The results of the study are examined by considering the situation expressed as empty cavity flow where the cylinder is not used in the cavity. It has been observed that the rotational speeds defined in different positions to the cylinder relative to the empty cavity flow provide an improvement in the flow structure and heat transfer.
Proje Numarası
OKÜBAP-2019-PT3-022
Kaynakça
- Ahuja K., Mendoza, J. 1995. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes.
- Bhatti, A., Aung W., 1984. Finite Difference Analysis of Laminar Separated Forced Convection in Cavities, Journal of Heat Transfer, 106(1), 49–54.
- Billah, M.M., Rahman, M.M., Sharif, U.M., Rahim, N.A., Saidur, R., Hasanuzzaman, M., 2011. Numerical Analysis of Fluid Flow Due to Mixed Convection in a Lid-Driven Cavity Having a Heated Circular Hollow Cylinder, International Communications in Heat and Mass Transfer, 38(8), 1093–1103.
- Çengel Y., Cimbala J.M., 2008. Akışkanlar Mekaniği Temelleri ve Uygulamaları, İzmir Güven Kitabevi, İzmir Rockwell, D., Naudascher, E., 1978. Review Self Sustaining Oscillations of Flow Past Cavities, Journal of Fluids Engineering, Transactions of the ASME, 100(2), 152-65.
- Doğan, F.B., 2014. Eş merkezli dönen iki silindir arasında oluşan Taylor ve Von Karman vortekslerinin hesaplamalı akışkanlar dinamiği ile incelenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Ankara, 110.
- Franke, M.E., Carr D.L., 1975. Effect of Geometry on Open Cavity Flow-Induced Pressure Oscillations, 2nd Aeroacoustics Conference, 492.
- Kumar, A., Dhiman, A.K., 2012. Effect of a Circular Cylinder on Separated Forced Convection at a Backward-Facing Step, International Journal of Thermal Sciences, 52(1),176–85.
- Laouira, H., Mebarek-Oudina, F., Hussein, A.K., Kolsi, L., Merah, A., Obai, Y., 2020. Heat Transfer inside a Horizontal Channel with an Open Trapezoidal Enclosure Subjected to a Heat Source of Different Lengths, Heat Transfer - Asian Research, 49(1), 406–23.
- Madi, A.F., Mataoui, A., Bouahmed, Z., 2011. Influence of Upstream Flow Characteristics on the Reattachment Phenomenon in Shallow Cavities, Thermal Science, 15(3) 721–34.
- Manovski, P., Giacobello, M., Soria, J., 2007. Particle Image Velocimetry Measurements over an Aerodynamically Open Two-Dimensional Cavity, in Proceedings of the 16th Australasian Fluid Mechanics Conference, 16AFMC, 677–83.
- Mesalhy, O.M., Abdel Aziz, S.S., El-Sayed, M.M., 2010. Flow and Heat Transfer over Shallow Cavities, International Journal of Thermal Sciences, 49(3), 514–21.
- Richards, R.F., Young, M.F., Haiad, J.C., 1987. Turbulent Forced Convection Heat Transfer from a Bottom Heated Open Surface Cavity, International Journal of Heat and Mass Transfer, 30(11), 2281–87.
- Sarohia, V., Massier, P.F., 1977. Control of Cavity Noise, Journal of Aircraft, 14(9), 833-37.
- Selimefendigil, F., Öztop, H.F., 2014. Numerical Study and Identification of Cooling of Heated Blocks in Pulsating Channel Flow with a Rotating Cylinder, International Journal of Thermal Sciences, 79, 132–45.
- Suponitsky, V., Avital, E., Gaster, M., 2005. On Three-Dimensionality and Control of Incompressible Cavity Flow, Physics of Fluids, 17(10).
- Şimşek, O., (2020). Üstten Akışlı Kapak Akımının Sayısal Modellemesi, Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 808-819.
- Şimşek, O., Gümüş, V., Özlük, A., (2021). Şaşırtmalı Mahmuzların Üç Boyutlu Sayısal Analizi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 187-198.
- Ukeiley, L., Murray, N., 2005. Velocity and Surface Pressure Measurements in an Open Cavity, Experiments in Fluids, 38(5), 656–71.
- Zdanski, P.S.B., Ortega, M.A., Nide, G.C.R., Fico, Jr., 2006. On the Flow over Cavities of Large Aspect Ratio: A Physical Analysis, International Communications in Heat and Mass Transfer, 33(4), 458–66.