Derleme
BibTex RIS Kaynak Göster

OVERVIEW OF RECHARGEABLE BATTERIES

Yıl 2022, Cilt: 10 Sayı: 1, 297 - 309, 23.03.2022
https://doi.org/10.21923/jesd.946769

Öz

Today, unmanned aerial vehicles, unmanned underwater vehicles, robotic and autonomous devices, hybrid and electric vehicles, portable computers, high-tech mobile phones, small digital cameras, military innovations and cordless devices have become widespread. Therefore, energy storage problem has arisen for these equipment. Lithium ion batteries, which are among the most efficient batteries today, have an undeniable wide area in the market. Lithium ion batteries have an enormous capacity. However, due to the limited supply of lithium in the world, lithium-ion batteries have almost reached their limits and are characterized by a high cost. This requires further development of such technologies called rechargeable batteries, such as lithium-ion batteries. This article is a review article to examine secondary rechargeable batteries developed from the past to the present, such as, lithium air batteries, sodium ion batteries, lithium sulfur batteries such as batteries developed on lithium-ion infrastructure and lead acid, nickel cadmium, nickel zinc, nickel metal hydride types of rechargeable batteries.

Kaynakça

  • Algül, H., 2015. Lityum Hava Pilleri İçin Ag/Mg Katkılı Anot Malzemelerinin Geliştirilmesi (Development of Increased Corrosion Resistance Anode Materials for Lithium Air Batteries), Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 74s, Sakarya.
  • Aras, U.T., 2009. Hibrit Elektrikli Araçların Batarya Sistemlerinin Bilgisayar Destekli Performans Analizi (Computer Aided Performance Analysis of Battery Systems of Hybrid Electrical Vehicles), Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, 43s, Kocaeli.
  • Arya, S., Verma, S., 2020. Nickel-Metal Hydride (Ni-MH) Batteries, Rechargeable Batteries, ss.131-176.
  • Ayoub, E., Karami, 2015. Review on The Charging Techniques of a Li-ion Battery, Third Internatiaonal Conference on Technological Advances in Electrical, Electronics and Computer Engineering.
  • Başaran, K., Çetin, N.S., Çelik, H., 2011. Rüzgar-Güneş Hibrit Güç Sistemi Tasarımı ve Uygulaması (Wind-Solar Hybrid Power System Design and Application), Conference: 6th International Advanced Technologies Symposium.
  • Cheng, X.-B., Huang, J.-Q., Zhang, Q., 2018. Review—Li Metal Anode in Working Lithium-Sulfur Batteries, Journal of the Electrochemical Society, 165(1), 6058-6072.
  • Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q., 2017. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chemical Reviews, 117(15), 10403-10473.
  • Choi, J.W., Aurbach, D., 2016. Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities, Nature Reviews Materials, 1(4).
  • Conte, F.V., 2006. Battery and Battery Management for Hybrid Electric Vehicles: A Review, e&i Elektrotechnik und Informationstechnik, 123(10), 424-431.
  • Cope, R. C., Podrazhansky ,Y., 1999. The Art of Battery Charging, Fourteenth Annual Battery Conferece
  • Dell, R.M., Rand, D.A.J., 2001. Understanding Batteries, The Royal Society of Chemistry, ss.100-101.
  • Demir, U., Aküner, M.C., 2018. Design and Optimization of In-Wheel Asynchronous Motor for Electric Vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1517-1530.
  • Demirci, O., Demirci, B.A., Taşkın, S., 2019. Battery Cell Measurement and Fault Diagnosis System for Detection of Problem in Automotive Batteries, Pamukkale University Journal of Engineering Sciences, 25(5), 546-552.
  • Deng, J., Luo, W.-B., Chou, S.-L., Liu, H.-K., Dou, S.-X., 2017. Sodium-Ion Batteries: From Academic Research to Practical Commercialization, Advanced Energy Materials, 8(4), 17014128.
  • Din, E., Schaef, C., Moffat, K., Stauth, J.T., 2017. A Scalable Active Battery Management System With Embedded Realtime Electrochemical Impedance Spectroscopy, IEEE T. Power Electr., 32 (7), 5688-5698.
  • Disosway, M., 1998. Development of High Power Nickel-Cadmium Batteries for Hybrid Vehicles, In Thirteenth Annual Battery Conference on Applications and Advances, Proceedings of the Conference.
  • Er, M., 2016. Sn-Sb-Cu-C ve Sn-Co-C Sentezi ve Lityum İyon Pil Anot Materyali Olarak Kullanılmalarının İncelenmesi (Synthesis of Sn-Sb-Cu-C and Sn-Co-C and Investigation of Them Using as Anode Material for Lithium Ion Batteries), Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 95s, Sakarya.
  • Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., 2011. Challenges in the Development of Advanced Li-Ion Batteries: a Review, Energ. Environ. Sci., 4 (9), 3243-3262.
  • Gençten, M., 2013. Kurşun Asit Akülerin Performanslarının Artırılması (Increasing the Performance of Lead Acid Batteries), Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 134s, Eskişehir.
  • Güneş, D., Tekdemir, İ.G., Karaarslan, M.Ş., Alboyacı, B., 2018. Assessment of the Impact of Electric Vehicle Charge Station Loads on Reliability Indices, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 1073-1084.
  • Hatipoğlu, G., 2019. Lityum İyon Piller İçin Metalurjik Silisyum/KNT/Grafen Çok Fonksiyonlu Anotların Geliştirilmesi (Development of Metallurgical Silicon / CNT / Graphene Multifunctional Anodes for Lithium Ion Batteries), Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 242s, Sakarya.
  • https://tap.org.tr/pil-atik-pil/sss/pil-nedir/ Erişim Tarihi: 12.05.2021
  • https://technoluxpro.com/tr/akkumulyatory/batarei/nizn.html Erişim Tarihi: 16.05.2021
  • https://reactual.com/portable-electronics/nizn-batteries.html Erişim Tarihi: 15.05.2021
  • Hung, Y., Yin, L., Wang, J., Wang, C., Tsai, C., Kuo, Y., 2018. Recycling of Spent Nickel–Cadmium Battery Using a Thermal Separation Process, Enviromental Progress and Sustainable Energy, 39 (2), 645-654.
  • Jeyaseelan, C., Jain, A., Khurana, P., Kumar, D., Thatai, S., 2020. Ni-Cd Batteries, Rechargeable Batteries, s.177-194.
  • Kocaman, A.S., 2019. Optimization of Hybrid Energy Systems With Pumped Hydro Atorage- A Case Study for Turkey, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 53-67.
  • Lavety, S., Keshri, R. K., Chaudhari, M. A., 2020. Evaluation of Charging Strategies for Valve Regulated Lead-Acid Batteries, IEEE Access, 8, 164747-164761.
  • Ledovskikh, A., Verbitskiy, E., Ayeb, A., Notten, P.H.L., 2003. Modelling of Rechargeable NiMH Batteries, Journal of Alloys and Compounds, 356-357, 742-745.
  • Ma, Z., Yuan, X., Li, L., Ma, Z.-F., Wilkinson, D.P., Zhang, L., Zhang, J., 2015. A Review of Cathode Materials and Structures for Rechargeable Lithium-Air Batteries, Energy and Environmental Science, 8(8), 2144-2198.
  • Middlemiss, L., Holland, A., 2018. A Review of Post-Lithium-Ion Batteries, EPSRC CDT in Energy Storage & Its Applications.
  • Miller, P., 2015. Automotive Lithium-Ion Batteries, Johson Matthey Technology Review, 59(1), 4-13.
  • Mirzaeian, M., Hall, P.J., 2009. Preparation of Controlled Porosity Carbon Aerogels for Energy Storage in Rechargeable Lithium Oxygen Batteries, Electrochimica Acta, 54(28), 7444-7451.
  • Moralı, U., Erol, S., 2020. Electrochemical Impedance Analysis of 18650 Lithium-Ion and 6HR61 Nickel-Metal Hydride Rechargeable Batteries, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 297-309.
  • Morimoto, K., Nagashima, I., Matsui, M., Maki, H., Mizuhata, M., 2018. Improvement of Electrochemical Properties and Oxidation/Reduction Behavior of Cobalt in Positive Electrode of Ni-Metal Hydride Battery, J. Power Sources, 388, 45-51.
  • Mulder, G., Omar, N., Pauwels, S., Meeus, M., Leemans, F., Verbrugge, B., De Nijs, W., Van den Bossche, P., Six, D., Van Mierlo, J., 2013. Comparison of Commercial Battery Cells in Relation to Material Properties, Electrochim. Acta, 87, 473-488.
  • Nitta, N., Wu, F., Lee, J. T., Yushin G., 2015. Li-ion Battery Materials: Present And Future, Materials Today, 18, 252-264.
  • Omar, N., Firouz, Y., Monem, M.A., Samba, A., Gualous, H., Coosemans, T., Van den Bossche, P., Mierlo J.V., 2014. Analysis of Nickel-Based Battery Technologies for Hybrid and Electric Vehicles, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier.
  • Özduğan, E., 2010. Atık Nikel Kadmiyum Pillerin Geri Kazanımına Yönelik Proses Geliştirilmesi (Development of a Recycling Process for Waste Nickel Cadmium Batteries), Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 102s, İstanbul.
  • Özermiş, M.E., 2010. Kurşun Asit Akülerin Optimum Şarj Olmasını Sağlayan Şarj Devresi (Charging Circuit Providing Optimum Charging of Lead Acid Batteries), Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, 80s, Denizli.
  • Palacin, M.R., 2009. Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective, Chemical Society Reviews, 38(9), 2565-2575.
  • Polat, B.D., Keleş, Ö., 2013. Lityum İyon Pil Teknolojisi (Technology of Lithium Ion Battery), Türk Mühendis ve Mimar Odaları Birliği, Metalurji Mühendisleri Odası, 162, 42-48.
  • Rahman, M.A., Wang, X., Wen, C., 2013. High Energy Density Metal-Air Batteries: A Review, Journal of the Electrochemical Society, 160(10), 1759-1771.
  • Rand, D.A.J., Moseley, P.T., Garche, J., Parker, C.D., 2004. Valve-Regulated Lead-Acid Batteries, Elsevier, s. 1-14, s.121-122.
  • Sakai, T., Uehara, I., Ishikawa, H., 1999. R and D on Metal Hydride Materials and Ni-MH Batteries in Japan, Journal of Alloys and Compounds, 293-295, 762-769.
  • Scrosati, B., Garche, J., 2010. Lithium batteries: Status, Prospects and Future, Journal of Power Sources, 195, 2419–2430.
  • Serhan, H. A., Ahmed, E. M., 2018. Effect of the Different Charging Techniques on Battery Life-time: Review, 2018 International Conference on Innovative Trends in Computer Engineering (ITCE).
  • Slater, M.D., Kim, D., Lee, E., Johnson, C.S., 2012. Sodium-Ion Batteries, Advanced Function Materials, 23(8), 947-958.
  • Turhan, M., 2011. Li-İyon Pil Destekli Yakıt Pili Güç Sisteminin Su Üstü Platforma Uygulanması (Application of a Power Control With a Li-Ion Battery Supported Powerful Fuel Cell to Surface Ship), Doktora Tezi, Kocaeli Üniversitesi Fen bilimleri Enstitüsü, 161s, Kocaeli.
  • Uz, U., 2019. Hexacopter Yapısında Bir İnsansız Hava Aracı İle Elektronik İlaçlama/Sulama Sisteminin Oluşturulması (The Productıon of Electronıc Pharmaceutıcal / Irrıgatıon System With an Unmanned Aerıal Vehıcle ın Hexacopter Structure), Yüksek Lisans Tezi, İstanbul Gelişim Üniversitesi Fen Bilimleri Enstitüsü, 84s, İstanbul.
  • Wang, D.-W., Zeng, Q., Zhou, G., Yin, L., Li, F., Cheng, H.-M., Gentle, I.R., Lu, G.Q.M., 2013. Carbon-Sulfur Composites for Li-S Batteries: Status and Prospects, Journal of Materials Chemistry A, 1, 9382-9394.
  • Warner, J., 2015. The Handbook of Lithium-Ion Battery Pack Design, Elsevier, ss.177-210.
  • Xia, X., Dahn, J.R., 2012. Study of the Reactivity of Na/Hard Carbon with Different Solvents and Electrolytes, Journal of the Electrochemical Society, 159(5), 515-519.
  • Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., Komaba, S., 2012. P2-type Na_x[Fe_(1/2) Mn_(1/2)] O_2 Made From Earth-Abundant Elements for Rechargeable Na Batteries, Nature Materials, 11(6), 512-517.
  • Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S., 2014. Research Development on Sodium-Ion Batteries, Chemical Reviews, 114(23), 11636-11682.
  • Yan, S., Nei, J., Li, P., Young, K., Simon Ng, K.Y., 2017. Effects of Cs_2 CO_3 Additive in KOH Electrolyte Used in Ni/MH Batteries, Batteries, Nickel Metal Hydride Batteries 2017, 3(4), 41.
  • Ying, T., Gao, X., Hu, W., Wu, F.,Noreus, D., 2006. Studies On Rechargeable NiMH Batteries, International Journal of Hydrogen Energy, 31, 525-530.
  • Yu, J., Lee, H., Lee, P.S., Lee, J., 2000. Effect of Cu Powder as an Additive Material on the Properties of Zr-Based Pasted Alloy Electrodes for Ni/MH Batteries, Journal of The Electrochemical Society, 147 (7), 2494-2497.
  • Yu, Y., Ji, X., Fan, H., 2018. Post Lithium Ion Batteries for Emerging Energy Storage Technologies, Green Energy and Environment, 3, 1.
  • Zhu, W.H., Zhu, Y., Tatarchuk, B.J., 2014. Self-Discharge Characteristics and Performance Degradation of Ni-MH Batteries for Storage Applications, Int. J. Hydrogen Energ., 39 (34), 19789-19798.

ŞARJ EDİLEBİLİR PİLLERE GENEL BAKIŞ

Yıl 2022, Cilt: 10 Sayı: 1, 297 - 309, 23.03.2022
https://doi.org/10.21923/jesd.946769

Öz

Günümüzde insansız hava araçları, insansız su altı araçları, robotik ve otonom cihazlar, hibrit ve elektrikli taşıtlar, taşınabilir bilgisayarlar, ileri teknoloji cep telefonları, küçük dijital kameralar, askeri yenilikler ve kablosuz cihazlar oldukça yaygınlaşmıştır. Bu nedenle, bu teçhizatlar için enerji depolaması sorunu oluşmuştur. Günümüzde en verimli piller arasında yer alan lityum iyon piller, piyasada yadsınamayacak kadar geniş bir alana sahiptir. Lityum iyon piller çok büyük bir kapasiteye sahiptir. Bununla birlikte, dünyadaki lityum kaynağının sınırlı olmasından dolayı, lityum iyon piller neredeyse sınırlarına ulaştı ve yüksek bir maliyetle karakterize edildi. Bu da lityum iyon pilleri gibi şarj edilebilir piller olarak adlandırılan bu tür teknolojilerin daha da geliştirilmesini gerektiriyor. Bu makale geçmişten günümüze geliştirilmiş olan sekonder yani şarj edilebilir pilleri incelemek için derlenmiş bir makaledir, bu piller, lityum hava piller, sodyum iyon piller, lityum sülfür piller gibi lityum iyon sonrası piller ve kurşun asit, nikel kadmiyum, nikel çinko, nikel metal hidrit gibi şarj edilebilir pillerdir.

Kaynakça

  • Algül, H., 2015. Lityum Hava Pilleri İçin Ag/Mg Katkılı Anot Malzemelerinin Geliştirilmesi (Development of Increased Corrosion Resistance Anode Materials for Lithium Air Batteries), Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 74s, Sakarya.
  • Aras, U.T., 2009. Hibrit Elektrikli Araçların Batarya Sistemlerinin Bilgisayar Destekli Performans Analizi (Computer Aided Performance Analysis of Battery Systems of Hybrid Electrical Vehicles), Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, 43s, Kocaeli.
  • Arya, S., Verma, S., 2020. Nickel-Metal Hydride (Ni-MH) Batteries, Rechargeable Batteries, ss.131-176.
  • Ayoub, E., Karami, 2015. Review on The Charging Techniques of a Li-ion Battery, Third Internatiaonal Conference on Technological Advances in Electrical, Electronics and Computer Engineering.
  • Başaran, K., Çetin, N.S., Çelik, H., 2011. Rüzgar-Güneş Hibrit Güç Sistemi Tasarımı ve Uygulaması (Wind-Solar Hybrid Power System Design and Application), Conference: 6th International Advanced Technologies Symposium.
  • Cheng, X.-B., Huang, J.-Q., Zhang, Q., 2018. Review—Li Metal Anode in Working Lithium-Sulfur Batteries, Journal of the Electrochemical Society, 165(1), 6058-6072.
  • Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q., 2017. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chemical Reviews, 117(15), 10403-10473.
  • Choi, J.W., Aurbach, D., 2016. Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities, Nature Reviews Materials, 1(4).
  • Conte, F.V., 2006. Battery and Battery Management for Hybrid Electric Vehicles: A Review, e&i Elektrotechnik und Informationstechnik, 123(10), 424-431.
  • Cope, R. C., Podrazhansky ,Y., 1999. The Art of Battery Charging, Fourteenth Annual Battery Conferece
  • Dell, R.M., Rand, D.A.J., 2001. Understanding Batteries, The Royal Society of Chemistry, ss.100-101.
  • Demir, U., Aküner, M.C., 2018. Design and Optimization of In-Wheel Asynchronous Motor for Electric Vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1517-1530.
  • Demirci, O., Demirci, B.A., Taşkın, S., 2019. Battery Cell Measurement and Fault Diagnosis System for Detection of Problem in Automotive Batteries, Pamukkale University Journal of Engineering Sciences, 25(5), 546-552.
  • Deng, J., Luo, W.-B., Chou, S.-L., Liu, H.-K., Dou, S.-X., 2017. Sodium-Ion Batteries: From Academic Research to Practical Commercialization, Advanced Energy Materials, 8(4), 17014128.
  • Din, E., Schaef, C., Moffat, K., Stauth, J.T., 2017. A Scalable Active Battery Management System With Embedded Realtime Electrochemical Impedance Spectroscopy, IEEE T. Power Electr., 32 (7), 5688-5698.
  • Disosway, M., 1998. Development of High Power Nickel-Cadmium Batteries for Hybrid Vehicles, In Thirteenth Annual Battery Conference on Applications and Advances, Proceedings of the Conference.
  • Er, M., 2016. Sn-Sb-Cu-C ve Sn-Co-C Sentezi ve Lityum İyon Pil Anot Materyali Olarak Kullanılmalarının İncelenmesi (Synthesis of Sn-Sb-Cu-C and Sn-Co-C and Investigation of Them Using as Anode Material for Lithium Ion Batteries), Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 95s, Sakarya.
  • Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., 2011. Challenges in the Development of Advanced Li-Ion Batteries: a Review, Energ. Environ. Sci., 4 (9), 3243-3262.
  • Gençten, M., 2013. Kurşun Asit Akülerin Performanslarının Artırılması (Increasing the Performance of Lead Acid Batteries), Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 134s, Eskişehir.
  • Güneş, D., Tekdemir, İ.G., Karaarslan, M.Ş., Alboyacı, B., 2018. Assessment of the Impact of Electric Vehicle Charge Station Loads on Reliability Indices, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 1073-1084.
  • Hatipoğlu, G., 2019. Lityum İyon Piller İçin Metalurjik Silisyum/KNT/Grafen Çok Fonksiyonlu Anotların Geliştirilmesi (Development of Metallurgical Silicon / CNT / Graphene Multifunctional Anodes for Lithium Ion Batteries), Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 242s, Sakarya.
  • https://tap.org.tr/pil-atik-pil/sss/pil-nedir/ Erişim Tarihi: 12.05.2021
  • https://technoluxpro.com/tr/akkumulyatory/batarei/nizn.html Erişim Tarihi: 16.05.2021
  • https://reactual.com/portable-electronics/nizn-batteries.html Erişim Tarihi: 15.05.2021
  • Hung, Y., Yin, L., Wang, J., Wang, C., Tsai, C., Kuo, Y., 2018. Recycling of Spent Nickel–Cadmium Battery Using a Thermal Separation Process, Enviromental Progress and Sustainable Energy, 39 (2), 645-654.
  • Jeyaseelan, C., Jain, A., Khurana, P., Kumar, D., Thatai, S., 2020. Ni-Cd Batteries, Rechargeable Batteries, s.177-194.
  • Kocaman, A.S., 2019. Optimization of Hybrid Energy Systems With Pumped Hydro Atorage- A Case Study for Turkey, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 53-67.
  • Lavety, S., Keshri, R. K., Chaudhari, M. A., 2020. Evaluation of Charging Strategies for Valve Regulated Lead-Acid Batteries, IEEE Access, 8, 164747-164761.
  • Ledovskikh, A., Verbitskiy, E., Ayeb, A., Notten, P.H.L., 2003. Modelling of Rechargeable NiMH Batteries, Journal of Alloys and Compounds, 356-357, 742-745.
  • Ma, Z., Yuan, X., Li, L., Ma, Z.-F., Wilkinson, D.P., Zhang, L., Zhang, J., 2015. A Review of Cathode Materials and Structures for Rechargeable Lithium-Air Batteries, Energy and Environmental Science, 8(8), 2144-2198.
  • Middlemiss, L., Holland, A., 2018. A Review of Post-Lithium-Ion Batteries, EPSRC CDT in Energy Storage & Its Applications.
  • Miller, P., 2015. Automotive Lithium-Ion Batteries, Johson Matthey Technology Review, 59(1), 4-13.
  • Mirzaeian, M., Hall, P.J., 2009. Preparation of Controlled Porosity Carbon Aerogels for Energy Storage in Rechargeable Lithium Oxygen Batteries, Electrochimica Acta, 54(28), 7444-7451.
  • Moralı, U., Erol, S., 2020. Electrochemical Impedance Analysis of 18650 Lithium-Ion and 6HR61 Nickel-Metal Hydride Rechargeable Batteries, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 297-309.
  • Morimoto, K., Nagashima, I., Matsui, M., Maki, H., Mizuhata, M., 2018. Improvement of Electrochemical Properties and Oxidation/Reduction Behavior of Cobalt in Positive Electrode of Ni-Metal Hydride Battery, J. Power Sources, 388, 45-51.
  • Mulder, G., Omar, N., Pauwels, S., Meeus, M., Leemans, F., Verbrugge, B., De Nijs, W., Van den Bossche, P., Six, D., Van Mierlo, J., 2013. Comparison of Commercial Battery Cells in Relation to Material Properties, Electrochim. Acta, 87, 473-488.
  • Nitta, N., Wu, F., Lee, J. T., Yushin G., 2015. Li-ion Battery Materials: Present And Future, Materials Today, 18, 252-264.
  • Omar, N., Firouz, Y., Monem, M.A., Samba, A., Gualous, H., Coosemans, T., Van den Bossche, P., Mierlo J.V., 2014. Analysis of Nickel-Based Battery Technologies for Hybrid and Electric Vehicles, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier.
  • Özduğan, E., 2010. Atık Nikel Kadmiyum Pillerin Geri Kazanımına Yönelik Proses Geliştirilmesi (Development of a Recycling Process for Waste Nickel Cadmium Batteries), Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 102s, İstanbul.
  • Özermiş, M.E., 2010. Kurşun Asit Akülerin Optimum Şarj Olmasını Sağlayan Şarj Devresi (Charging Circuit Providing Optimum Charging of Lead Acid Batteries), Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, 80s, Denizli.
  • Palacin, M.R., 2009. Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective, Chemical Society Reviews, 38(9), 2565-2575.
  • Polat, B.D., Keleş, Ö., 2013. Lityum İyon Pil Teknolojisi (Technology of Lithium Ion Battery), Türk Mühendis ve Mimar Odaları Birliği, Metalurji Mühendisleri Odası, 162, 42-48.
  • Rahman, M.A., Wang, X., Wen, C., 2013. High Energy Density Metal-Air Batteries: A Review, Journal of the Electrochemical Society, 160(10), 1759-1771.
  • Rand, D.A.J., Moseley, P.T., Garche, J., Parker, C.D., 2004. Valve-Regulated Lead-Acid Batteries, Elsevier, s. 1-14, s.121-122.
  • Sakai, T., Uehara, I., Ishikawa, H., 1999. R and D on Metal Hydride Materials and Ni-MH Batteries in Japan, Journal of Alloys and Compounds, 293-295, 762-769.
  • Scrosati, B., Garche, J., 2010. Lithium batteries: Status, Prospects and Future, Journal of Power Sources, 195, 2419–2430.
  • Serhan, H. A., Ahmed, E. M., 2018. Effect of the Different Charging Techniques on Battery Life-time: Review, 2018 International Conference on Innovative Trends in Computer Engineering (ITCE).
  • Slater, M.D., Kim, D., Lee, E., Johnson, C.S., 2012. Sodium-Ion Batteries, Advanced Function Materials, 23(8), 947-958.
  • Turhan, M., 2011. Li-İyon Pil Destekli Yakıt Pili Güç Sisteminin Su Üstü Platforma Uygulanması (Application of a Power Control With a Li-Ion Battery Supported Powerful Fuel Cell to Surface Ship), Doktora Tezi, Kocaeli Üniversitesi Fen bilimleri Enstitüsü, 161s, Kocaeli.
  • Uz, U., 2019. Hexacopter Yapısında Bir İnsansız Hava Aracı İle Elektronik İlaçlama/Sulama Sisteminin Oluşturulması (The Productıon of Electronıc Pharmaceutıcal / Irrıgatıon System With an Unmanned Aerıal Vehıcle ın Hexacopter Structure), Yüksek Lisans Tezi, İstanbul Gelişim Üniversitesi Fen Bilimleri Enstitüsü, 84s, İstanbul.
  • Wang, D.-W., Zeng, Q., Zhou, G., Yin, L., Li, F., Cheng, H.-M., Gentle, I.R., Lu, G.Q.M., 2013. Carbon-Sulfur Composites for Li-S Batteries: Status and Prospects, Journal of Materials Chemistry A, 1, 9382-9394.
  • Warner, J., 2015. The Handbook of Lithium-Ion Battery Pack Design, Elsevier, ss.177-210.
  • Xia, X., Dahn, J.R., 2012. Study of the Reactivity of Na/Hard Carbon with Different Solvents and Electrolytes, Journal of the Electrochemical Society, 159(5), 515-519.
  • Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., Komaba, S., 2012. P2-type Na_x[Fe_(1/2) Mn_(1/2)] O_2 Made From Earth-Abundant Elements for Rechargeable Na Batteries, Nature Materials, 11(6), 512-517.
  • Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S., 2014. Research Development on Sodium-Ion Batteries, Chemical Reviews, 114(23), 11636-11682.
  • Yan, S., Nei, J., Li, P., Young, K., Simon Ng, K.Y., 2017. Effects of Cs_2 CO_3 Additive in KOH Electrolyte Used in Ni/MH Batteries, Batteries, Nickel Metal Hydride Batteries 2017, 3(4), 41.
  • Ying, T., Gao, X., Hu, W., Wu, F.,Noreus, D., 2006. Studies On Rechargeable NiMH Batteries, International Journal of Hydrogen Energy, 31, 525-530.
  • Yu, J., Lee, H., Lee, P.S., Lee, J., 2000. Effect of Cu Powder as an Additive Material on the Properties of Zr-Based Pasted Alloy Electrodes for Ni/MH Batteries, Journal of The Electrochemical Society, 147 (7), 2494-2497.
  • Yu, Y., Ji, X., Fan, H., 2018. Post Lithium Ion Batteries for Emerging Energy Storage Technologies, Green Energy and Environment, 3, 1.
  • Zhu, W.H., Zhu, Y., Tatarchuk, B.J., 2014. Self-Discharge Characteristics and Performance Degradation of Ni-MH Batteries for Storage Applications, Int. J. Hydrogen Energ., 39 (34), 19789-19798.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleler \ Review Articles
Yazarlar

Kadir Can Sezer 0000-0001-8941-9251

Gültekin Basmacı 0000-0003-4818-3160

Yayımlanma Tarihi 23 Mart 2022
Gönderilme Tarihi 2 Haziran 2021
Kabul Tarihi 4 Ekim 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Sezer, K. C., & Basmacı, G. (2022). ŞARJ EDİLEBİLİR PİLLERE GENEL BAKIŞ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(1), 297-309. https://doi.org/10.21923/jesd.946769