Derleme
BibTex RIS Kaynak Göster

NANOTHERANOSTICS

Yıl 2021, , 131 - 155, 18.01.2021
https://doi.org/10.33483/jfpau.717067

Öz

Objective: In recent years, significant advances have been made in early diagnosis and treatment of diseases, thanks to advances in nanotechnology. With the birth of the concept of “theranostic”, a concept that combines diagnostic imaging methods with therapeutic methods, cancer nanotherapy has started to rise rapidly. In this review, it is aimed to review the recent studies on these subjects by giving information about the theranostic concept, cancer nanotherapy, drug and gene delivery systems, nanoprobes, nanosensors, personalized therapy, and active and passive targeting.
Result and Discussion: The use of nanostructures carrying various targeted drugs, genes and imaging agents has provided new possibilities for personalized medicine. In medicine, by overcoming biological barriers in the body with nanoscale drug delivery systems, targeted diagnosis with imaging systems and treatment with theranostics are provided. We believe that the use of nanoteranostic in medicine, which provides early diagnosis and treatment of cancer, which is the main cause of death in the world, will take up a wider place day by day.

Kaynakça

  • Sumer, B. and Gao, J. (2008). Theranostic nanomedicine for cancer. Nanomedicine, 3(2), 137–140.
  • Kurdziel, K., Ravizzini, G., Croft, B.Y., Tatum, J.L., Choyke, P.L., Kobayashi, H. (2008). The evolving role of nuclear molecular imaging in cancer. Expert Opinion on Medical Diagnostics, 2(7), 829–842.
  • Bozkurt, M.F. and Özcan, Z. (2018). The evolving role of nuclear medicine and molecular imaging: theranostics and personalized therapeutic applications. Molecular Imaging and Radionuclide Therapy, 27, 1–2.
  • Aulić, S., Bolognesi, M.L., Legname, G. (2013). Small-molecule theranostic probes: A promising future in neurodegenerative diseases. International Journal of Cell Biology, 2013, 150952.
  • Kim, T.H., Lee, S. and Chen, X. (2013). Nanotheranostics for personalized medicine. Expert Review of Molecular Diagnostics, 13(3), 257–269.
  • Swierczewska, M., Liu, G., Lee, S., Chen, X. (2012). High-sensitivity nanosensors for biomarker detection. Chemical Society Reviews, 41(7), 2641–2655.
  • Chikkaveeraiah, B.V., Bhirde, A.A., Morgan, N.Y., Eden, H.S., Chen, X. (2012). Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano, 6(8), 6546–6561.
  • Farokhzad, O.C. and Langer, R. (2006). Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 58(14), 1456–1459.
  • Funkhouser, J. (2002). Reinventing pharma: The theranostic revolution. Current Drug Discovery, 2, 17–19.
  • Durak, H. (2015). Onkolojide kişiselleştirilmiş tedavi ve teranostik yaklaşımlar. Nükleer Tıp Seminerleri, (2), 80–4.
  • Kalash, R.S., Lakshmanan, V.K., Cho, C.-S., Park, I.-K. (2016). Theranostics. In: M. Ebara (Ed.), Biomaterials Nanoarchitectonics, (p. 197–215). 1st Edition. Elsevier Inc.: William Andrew.
  • Cancer Web site. (2018). Retrieved Jan 17, 2020, from https://www.who.int/news-room/fact-sheets/detail/cancer.
  • Nayak, K.A. and Pal, D. (2010). Nanotechnology for targeted delivery in cancer therapeutics. Seemanta Institute of Pharmaceutical Sciences, 1(1), 1–7.
  • Wang, L.V. (2004). Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography. Disease Markers, 19, 123–138.
  • Singh, K. (2005). Nanotechnology in cancer detection and treatment. Technology in Cancer Research and Treatment, 4, 583–584.
  • National Cancer Institute Web site. (2004). "Cancer Nanotechnology". Retrieved Jan 25, 2020, from https://nano.cancer.gov/.
  • Oylar, Ö. and Tekin, İ. (2011). Nanotechnology in cancer diagnosis and treatment. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 16(1), 147–154.
  • Erdoğan, A. and Özkan, A. (2013). Kanser tedavisinde ve tümör görüntülemesinde nanoteknolojik uygulamalar. Arşiv Kaynak Tarama Dergisi, 22(3), 426–440.
  • Şengel-Türk, C. and Hasçiçek, C. (2009). Polimerik nanopartiküller ilaç taşıyıcı sistemlerde yüzey modifikasyonu. Ankara Universitesi Eczacilik Fakultesi Dergisi, 38, 137–154.
  • Mura, S. and Couvreur, P. (2012). Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews, 64(13), 1394-1416.
  • Yang, J., Lee, C.H., Ko, H.J., Suh, J.S., Yoon, H.G., Lee, K., Huh, Y.M., Haam, S. (2007). Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angewandte Chemie - International Edition, 46(46), 8836–8839.
  • Liu, Y., Ibricevic, A., Cohen, J.A., Cohen, J.L., Gunsten, S.P., Fréchet, J.M., Walter, M.J., Welch, M.J., Brody, S.L. (2009). Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics. Molecular Pharmaceutics, 6(6), 1891–1902.
  • Lim, E.K., Huh, Y.M., Yang, J., Lee, K., Suh, J.S., Haam, S. (2011). PH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Advanced Materials, 23(21), 2436–2442.
  • Hyung, W., Ko, H., Park, J., Lim, E., Park, S.B., Park, Y.J., Yoon, H.G., Suh, J.S., Haam, S., Huh, Y.M. (2008). Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnology and Bioengineering, 99(2), 442–454.
  • Gatenby, R.A. and Gawlinski, E.T. (1996). A reaction-diffusion model of cancer invasion. Cancer Research, 56(24), 5745–5753.
  • Wickham, T.J. (2003). Ligand-directed targeting of genes to the site of disease. Nature Medicine, 9(1), 135–139.
  • Saltzman, W.M. (2001). Drug Delivery, Oxford University Press, New York, p.384.
  • Wang, Z., Niu, G., Chen, X. (2014). Polymeric materials for theranostic applications. Pharmaceutical Research, 31(6), 1358–1376.
  • Sezgin Bayındır, Z. and Yüksel, N. (2007). Pegilasyon: PEG konjugatlarının hazırlanması ve uygulamaları. Ankara Universitesi Eczacilik Fakultesi Dergisi, 36(4), 249–266.
  • Tüylek, Z. (2017). İlaç taşıyıcı sistemler ve nanoteknolojik etkileşim. Bozok Medical Journal, 7(3), 89–98.
  • Jackson, E.F., Esparza-Coss, E., Wen, X., Ng, C.S., Daniel, S.L., Price, R.E., Rivera, B., Charnsangavej, C., Gelovani, J.G., Li, C. (2007). Magnetic resonance imaging of therapy-induced necrosis using gadolinium-chelated polyglutamic acids. International Journal of Radiation Oncology Biology Physics, 68(3), 830–838.
  • Vaidya, A., Sun, Y., Ke, T., Jeong, E.K., Lu, Z.R. (2006). Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magnetic Resonance in Medicine, 25(9), 2002–2011.
  • Tan, M. and Lu, Z.-R. (2011). Integrin targeted MR imaging. Theranostics, 1, 83–101.
  • Haag, R. (2004). Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angewandte Chemie - International Edition, 43(3), 278–282.
  • Mitra, A., Nan, A., Line, B.R., Ghandehari, H. (2006). Nanocarriers for nuclear imaging and radiotherapy of cancer. Current Pharmaceutical Design, 12(36), 4729–4749.
  • Portney, N.G. and Ozkan, M. (2006). Nano-oncology: Drug delivery, imaging, and sensing. Analytical and Bioanalytical Chemistry, 384(3), 620–630.
  • Kaida, S., Cabral, H., Kumagai, M., Kishimura, A., Terada, Y., Sekino, M., Aoki, I., Nishiyama, N., Tani, T., Kataoka, K. (2010). Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Research, 70(18), 7031–7041.
  • Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S.F., Sherry, A.D., Boothman, D.A., Gao, J. (2006). Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters, 6(11), 2427–2430.
  • Muthu, M.S., Leong, D.T., Mei, L., Feng, S.S. (2014). Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 4(6), 660–677.
  • Vijayakumar, M.R., Muthu, M.S., Singh, S. (2013). Copolymers of poly(lactic acid) and d-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: Versatile multifunctional platforms for cancer diagnosis and therapy. Expert Opinion on Drug Delivery, 10(4), 529–543.
  • Liu, Y., Feng, L., Liu, T., Zhang, L., Yao, Y., Yu, D., Wang, L., Zhang, N. (2014). Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale, 6(6), 3231–3242.
  • Pan, G.-Y., Jia, H.-R., Zhu, Y.-X., Sun, W., Cheng, X.-T., Wu F.-G. (2018). Correction to cyanine-containing polymeric nanoparticles with imaging/therapy-switchable capability for mitochondria-targeted cancer theranostics. ACS Applied Nano Materials, 1(6), 2885–2897.
  • Akhter, S., Ahmad, M.Z., Ahmad, F.J., Storm, G., Kok, R.J. (2012). Gold nanoparticles in theranostic oncology: Current state-of-the-art. Expert Opinion on Drug Delivery, 9(10), 1225–1243.
  • Xiao, Y., Hong, H., Matson, V.Z., Javadi, A., Xu, W., Yang, Y., Zhang, Y., Engle, J.W., Nickles, R.J., Cai, W., Steeber, D.A., Gong, S. (2012). Gold nanorods conjugated with doxorubicin and cRGD for combined anti-cancer drug delivery and PET imaging. Theranostics, 2(8), 757–768.
  • Sayıner, Ö. and Çomoğlu, T. (2016). Nanotaşıyıcı sistemlerde hedeflendirme. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 40(3), 62–79.
  • Saad, M., Garbuzenko, O.B., Ber, E., Chandna, P., Khandare, J.J., Pozharov, V.P., Minko, T. (2008). Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging?. Journal of Controlled Release, 130(2), 107–114.
  • Taratula, O., Schumann, C., Naleway, M.A., Pang, A.J., Chon, K.J., Taratula, O. (2013). A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Molecular Pharmaceutics, 10(10), 3946–3958.
  • Sapra, P., Tyagi, P., Allen, T. (2005). Ligand-targeted liposomes for cancer treatment. Current Drug Delivery, 2(4), 369–381.
  • Zhao, Y.Z., Dai, D.D., Lu, C.T., Chen, L.J., Lin, M., Shen, X.T., Li, X.K., Zhang, M., Jiang, X., Jin, R.R., Li, X., Lv, H.F., Cai, L., Huang, P.T. (2013). Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Letters, 330(1), 74–83.
  • Saesoo, S., Sathornsumetee, S., Anekwiang, P., Treetidnipa, C., Thuwajit, P., Bunthot, S., Maneeprakorn, W., Maurizi, L., Hofmann, H., Rungsardthong, R.U., Saengkrit, N. (2018). Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids and Surfaces B: Biointerfaces, 161, 497–507.
  • Wen, C.J., Zhang, L.W., Al-Suwayeh, S.A., Yen, T.C., Fang, J.Y. (2012). Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. International Journal of Nanomedicine, 7, 1599–1611.
  • Al-Jamal, W.T. Al-Jamal, K.T, Tian, B., Lacerda, L., Bomans, P.H., Frederik, P.M., Kostarelos, K. (2008). Lipid - Quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano, 2(3), 408–418.
  • Al-Jamal, W.T. and Kostarelos, K. (2011). Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts of Chemical Research, 44(10), 1094–1104.
  • Yong, K.T., Roy, I., Swihart, M.T., Prasad, P.N. (2009). Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. Journal of Materials Chemistry, 19, 4655–4672.
  • Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S. (2005). In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 16(1), 63–72.
  • Xu, G., Mahajan, S., Roy, I., Yong, K.T. (2013). Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Frontiers in Pharmacology, 4, 140.
  • Huang, H.-K., Yan, J., Liu, P., Zhao, B.-Y., Cao, Y., Zhang, X.-F. (2017). A novel cancer nanotheranostics system based on quantum dots encapsulated by a polymer-prodrug with controlled release behaviour. Australian Journal of Chemistry, 70(12), 1302–1311.
  • Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P.W., Langer, R., Farokhzad, O.C. (2007). Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070.
  • Silindir, M., Erdoğan, S., Özer, A.Y., Maia, S. (2012). Liposomes and their applications in molecular imaging. Journal of Drug Targeting, 20(5), 401–415.
  • Cole, J.T. and Holland, N.B. (2015). Multifunctional nanoparticles for use in theranostic applications. Drug Delivery and Translational Research, 5(3), 295–309.
  • Pysz, M.A., Gambhir, S.S., Willmann, J.K. (2010). Molecular imaging: current status and emerging strategies. Clinical Radiology, 65(7), 500–516.
  • Kao, H., Lin, Y.Y., Chen, C.C., Chi, K.H., Tien, D.C., Hsia, C.C., Lin, M.H., Wang, H.E. (2013). Evaluation of EGFR-targeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorganic & Medicinal Chemistry Letters, 23(11), 3180–3185.
  • Gambhir, S.S. (2002). Molecular imaging of cancer with positron emission tomography. Nature Reviews Cancer, 2(9), 683–693.
  • Chen, F., Hong, H., Zhang, Y., Valdovinos, H.F., Shi, S., Kwon, G.S., Theuer, C.P., Barnhart, T.E., Cai, W. (2013). In vivo tumor targeting and ımage-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano, 7(10), 9027–9039.
  • Wang, C., Ravi, S., Garapati, U.S., Das, M., Howell, M., MallelaMallela, J., Alwarapan, S., Mohapatra, S.S., Mohapatra, S. (2013). Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: A theranostic platform for tumor-targeted codelivery of drugs, genes and MRI contrast agents. Journal of Materials Chemistry B, 1(35), 4396–4405.
  • Panchapakesan, B., Book-Newell, B., Sethu, P., Rao, M., Irudayaraj, J. (2011). Gold nanoprobes for theranostics. Nanomedicine, 6(10), 1787–1811.
  • Lee, S., Xie, J., Chen, X. (2010). Activatable molecular probes for cancer imaging. Current Topics in Medicinal Chemistry, 10(11), 1135–1144.
  • Lee, S., Xie, J., Chen, X. (2010). Peptide-based probes for targeted molecular imaging. Biochemistry, 49(7), 1364–1376.
  • Tyagi, S. and Kramer, F.R. (1996). Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14(3), 303–308.
  • Gültekin, N., Karaoǧlu, K., Küçükates, E. (2008). Hücrede apoptoz ve saǧkalım mekanizmalarinin keşfedilmesi ve yeni potansiyel tedavi stratejileri. Turk Kardiyoloji Dernegi Arsivi, 36(2), 120–130.
  • Kim, K. Lee, M., Park, H., Kim, J.-H., Kim, S., Chung, H., Choi, K., Kim, I.-S., Seong, B.L., Kwon, I.C. (2006). Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. Journal of the American Chemical Society, 128(11), 3490–3491.
  • Lee, S., Choi, K.Y., Chung, H., Ryu, J.H., Lee, A., Koo, H., Youn, I.C., Park, J.H., Kim, I.S., Kim, S.Y., Chen, X., Jeong, S.Y., Kwon, I.C., Kim, K., Choi, K. (2011). Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe. Bioconjugate Chemistry, 22(2), 125–131.
  • Huang, X., Swierczewska, M., Choi, K.Y., Zhu, L., Bhirde, A., Park, J., Kim, K., Xie, J., Niu, G., Lee, K.C., Lee, S., Chen, X. (2012). Multiplex imaging of an intracellular proteolytic cascade by using a broad-spectrum nanoquencher. Angewandte Chemie - International Edition, 51(7), 1625–1630.
  • Chen, Y. Xianyu, Y., Wu, J., Yin, B., Jiang, X. (2016). Click chemistry-mediated nanosensors for biochemical assays. Theranostics, 6(7), 969–985.
  • Brennan, J.L., Hatzakis, N.S., Tshikhudo, T.R., Dirvianskyte, N., Razumas, V., Patkar, S., Vind, J., Svendsen, A., Nolte, R.J., Rowan, A.E., Brust, M. (2006). Bionanoconjugation via click chemistry: The creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chemistry, 17(6), 1373–1375.
  • Cutler, J.I., Zheng, D., Xu, X., Giljohann, D.A., Mirkin, C.A. (2010). Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Letters, 10(4), 1477–1480.
  • Chen, L., Li, H., He, H., Wu, H., Jin, Y. (2015). Smart plasmonic glucose nanosensors as generic theranostic agents for targeting-free cancer cell screening and killing. Analytical Chemistry, 87(13), 6868–6874.
  • Xia, Z., Xing, Y., So, M.K., Koh, A.L., Sinclair, R., Rao, J. (2008). Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Analytical Chemistry, 80(22), 8649–8655.
  • Wang, Q., Wang, C., Wang, X., Zhang, Y., Wu, Y., Dong, C., Shuang, S. (2019). Construction of CPs@MnO2-AgNPs as a multifunctional nanosensor for glutathione sensing and cancer theranostics. Nanoscale, 11, 18845–18853.
  • Perez, J.M., Josephson, L., Weissleder, R. (2004). Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem, 5(3), 261–264.
  • Vogenberg, F.R., Barash, C.I., Pursel, M. (2010). Personalized medicine - Part 1: Evolution and development into theranostics. Pharmacy and Therapeutics, 35(10), 560–576.
  • Bamrungsap, S., Zhao, Z., Chen, T., Wang, L., Li, C., Fu, T., Tan, W. (2012). Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine London England, 7(8), 1253–1271.
  • Sinha, R., Kim, G.J., Nie, S., Shin, D.M. (2006). Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Molecular Cancer Therapeutics, 5(8), 1909–1917.
  • Farokhzad, O.C., Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano, 3(1), 16–20.

NANOTERANOSTİKLER

Yıl 2021, , 131 - 155, 18.01.2021
https://doi.org/10.33483/jfpau.717067

Öz

Amaç: Son yıllarda, nanoteknolojideki gelişmeler sayesinde hastalıkların erken teşhis ve tedavisinde önemli ilerlemeler kaydedilmektedir. Tanısal görüntüleme yöntemleriyle tedavi yöntemlerini birleştiren bir kavram olan “teranostik” kavramının doğmasıyla kanser nanotıbbı hızlı bir yükselişe geçmiştir. Bu derlemede, teranostik kavramı, kanser nanotıbbı, ilaç ve gen taşıyıcı sistem çeşitleri, nanogörüntüleme yöntemleri, nanoproblar, nanosensörler, kişiselleştirilmiş tedavi ve aktif ve pasif hedeflendirme ile ilgili bilgiler verilerek, son yıllarda bu konularda yapılmış olan çalışmaların gözden geçirilmesi amaçlanmıştır.
Sonuç ve Tartışma: Hedeflendirilmiş çeşitli ilaç, gen ve görüntüleme maddelerini taşıyan nanoyapıların kullanılması kişiselleştirilmiş tedaviye yeni olanaklar sağlamıştır. Tıpta nanoboyutlu ilaç taşıyıcı sistemler ile vücuttaki biyolojik bariyerler aşılarak, görüntüleme sistemleriyle hedefe yönelik teşhis ve teranostikler ile de tedavi sağlanmaktadır. Dünyada başlıca ölüm sebebi olan kanserin erken teşhisini ve tedavisini sağlayan nanoteranostiklerin tıpta kullanımının gün geçtikçe daha geniş bir yer kaplayacağı kanaatindeyiz.

Kaynakça

  • Sumer, B. and Gao, J. (2008). Theranostic nanomedicine for cancer. Nanomedicine, 3(2), 137–140.
  • Kurdziel, K., Ravizzini, G., Croft, B.Y., Tatum, J.L., Choyke, P.L., Kobayashi, H. (2008). The evolving role of nuclear molecular imaging in cancer. Expert Opinion on Medical Diagnostics, 2(7), 829–842.
  • Bozkurt, M.F. and Özcan, Z. (2018). The evolving role of nuclear medicine and molecular imaging: theranostics and personalized therapeutic applications. Molecular Imaging and Radionuclide Therapy, 27, 1–2.
  • Aulić, S., Bolognesi, M.L., Legname, G. (2013). Small-molecule theranostic probes: A promising future in neurodegenerative diseases. International Journal of Cell Biology, 2013, 150952.
  • Kim, T.H., Lee, S. and Chen, X. (2013). Nanotheranostics for personalized medicine. Expert Review of Molecular Diagnostics, 13(3), 257–269.
  • Swierczewska, M., Liu, G., Lee, S., Chen, X. (2012). High-sensitivity nanosensors for biomarker detection. Chemical Society Reviews, 41(7), 2641–2655.
  • Chikkaveeraiah, B.V., Bhirde, A.A., Morgan, N.Y., Eden, H.S., Chen, X. (2012). Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano, 6(8), 6546–6561.
  • Farokhzad, O.C. and Langer, R. (2006). Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 58(14), 1456–1459.
  • Funkhouser, J. (2002). Reinventing pharma: The theranostic revolution. Current Drug Discovery, 2, 17–19.
  • Durak, H. (2015). Onkolojide kişiselleştirilmiş tedavi ve teranostik yaklaşımlar. Nükleer Tıp Seminerleri, (2), 80–4.
  • Kalash, R.S., Lakshmanan, V.K., Cho, C.-S., Park, I.-K. (2016). Theranostics. In: M. Ebara (Ed.), Biomaterials Nanoarchitectonics, (p. 197–215). 1st Edition. Elsevier Inc.: William Andrew.
  • Cancer Web site. (2018). Retrieved Jan 17, 2020, from https://www.who.int/news-room/fact-sheets/detail/cancer.
  • Nayak, K.A. and Pal, D. (2010). Nanotechnology for targeted delivery in cancer therapeutics. Seemanta Institute of Pharmaceutical Sciences, 1(1), 1–7.
  • Wang, L.V. (2004). Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography. Disease Markers, 19, 123–138.
  • Singh, K. (2005). Nanotechnology in cancer detection and treatment. Technology in Cancer Research and Treatment, 4, 583–584.
  • National Cancer Institute Web site. (2004). "Cancer Nanotechnology". Retrieved Jan 25, 2020, from https://nano.cancer.gov/.
  • Oylar, Ö. and Tekin, İ. (2011). Nanotechnology in cancer diagnosis and treatment. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 16(1), 147–154.
  • Erdoğan, A. and Özkan, A. (2013). Kanser tedavisinde ve tümör görüntülemesinde nanoteknolojik uygulamalar. Arşiv Kaynak Tarama Dergisi, 22(3), 426–440.
  • Şengel-Türk, C. and Hasçiçek, C. (2009). Polimerik nanopartiküller ilaç taşıyıcı sistemlerde yüzey modifikasyonu. Ankara Universitesi Eczacilik Fakultesi Dergisi, 38, 137–154.
  • Mura, S. and Couvreur, P. (2012). Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews, 64(13), 1394-1416.
  • Yang, J., Lee, C.H., Ko, H.J., Suh, J.S., Yoon, H.G., Lee, K., Huh, Y.M., Haam, S. (2007). Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angewandte Chemie - International Edition, 46(46), 8836–8839.
  • Liu, Y., Ibricevic, A., Cohen, J.A., Cohen, J.L., Gunsten, S.P., Fréchet, J.M., Walter, M.J., Welch, M.J., Brody, S.L. (2009). Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics. Molecular Pharmaceutics, 6(6), 1891–1902.
  • Lim, E.K., Huh, Y.M., Yang, J., Lee, K., Suh, J.S., Haam, S. (2011). PH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Advanced Materials, 23(21), 2436–2442.
  • Hyung, W., Ko, H., Park, J., Lim, E., Park, S.B., Park, Y.J., Yoon, H.G., Suh, J.S., Haam, S., Huh, Y.M. (2008). Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnology and Bioengineering, 99(2), 442–454.
  • Gatenby, R.A. and Gawlinski, E.T. (1996). A reaction-diffusion model of cancer invasion. Cancer Research, 56(24), 5745–5753.
  • Wickham, T.J. (2003). Ligand-directed targeting of genes to the site of disease. Nature Medicine, 9(1), 135–139.
  • Saltzman, W.M. (2001). Drug Delivery, Oxford University Press, New York, p.384.
  • Wang, Z., Niu, G., Chen, X. (2014). Polymeric materials for theranostic applications. Pharmaceutical Research, 31(6), 1358–1376.
  • Sezgin Bayındır, Z. and Yüksel, N. (2007). Pegilasyon: PEG konjugatlarının hazırlanması ve uygulamaları. Ankara Universitesi Eczacilik Fakultesi Dergisi, 36(4), 249–266.
  • Tüylek, Z. (2017). İlaç taşıyıcı sistemler ve nanoteknolojik etkileşim. Bozok Medical Journal, 7(3), 89–98.
  • Jackson, E.F., Esparza-Coss, E., Wen, X., Ng, C.S., Daniel, S.L., Price, R.E., Rivera, B., Charnsangavej, C., Gelovani, J.G., Li, C. (2007). Magnetic resonance imaging of therapy-induced necrosis using gadolinium-chelated polyglutamic acids. International Journal of Radiation Oncology Biology Physics, 68(3), 830–838.
  • Vaidya, A., Sun, Y., Ke, T., Jeong, E.K., Lu, Z.R. (2006). Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magnetic Resonance in Medicine, 25(9), 2002–2011.
  • Tan, M. and Lu, Z.-R. (2011). Integrin targeted MR imaging. Theranostics, 1, 83–101.
  • Haag, R. (2004). Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angewandte Chemie - International Edition, 43(3), 278–282.
  • Mitra, A., Nan, A., Line, B.R., Ghandehari, H. (2006). Nanocarriers for nuclear imaging and radiotherapy of cancer. Current Pharmaceutical Design, 12(36), 4729–4749.
  • Portney, N.G. and Ozkan, M. (2006). Nano-oncology: Drug delivery, imaging, and sensing. Analytical and Bioanalytical Chemistry, 384(3), 620–630.
  • Kaida, S., Cabral, H., Kumagai, M., Kishimura, A., Terada, Y., Sekino, M., Aoki, I., Nishiyama, N., Tani, T., Kataoka, K. (2010). Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Research, 70(18), 7031–7041.
  • Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S.F., Sherry, A.D., Boothman, D.A., Gao, J. (2006). Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters, 6(11), 2427–2430.
  • Muthu, M.S., Leong, D.T., Mei, L., Feng, S.S. (2014). Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 4(6), 660–677.
  • Vijayakumar, M.R., Muthu, M.S., Singh, S. (2013). Copolymers of poly(lactic acid) and d-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: Versatile multifunctional platforms for cancer diagnosis and therapy. Expert Opinion on Drug Delivery, 10(4), 529–543.
  • Liu, Y., Feng, L., Liu, T., Zhang, L., Yao, Y., Yu, D., Wang, L., Zhang, N. (2014). Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale, 6(6), 3231–3242.
  • Pan, G.-Y., Jia, H.-R., Zhu, Y.-X., Sun, W., Cheng, X.-T., Wu F.-G. (2018). Correction to cyanine-containing polymeric nanoparticles with imaging/therapy-switchable capability for mitochondria-targeted cancer theranostics. ACS Applied Nano Materials, 1(6), 2885–2897.
  • Akhter, S., Ahmad, M.Z., Ahmad, F.J., Storm, G., Kok, R.J. (2012). Gold nanoparticles in theranostic oncology: Current state-of-the-art. Expert Opinion on Drug Delivery, 9(10), 1225–1243.
  • Xiao, Y., Hong, H., Matson, V.Z., Javadi, A., Xu, W., Yang, Y., Zhang, Y., Engle, J.W., Nickles, R.J., Cai, W., Steeber, D.A., Gong, S. (2012). Gold nanorods conjugated with doxorubicin and cRGD for combined anti-cancer drug delivery and PET imaging. Theranostics, 2(8), 757–768.
  • Sayıner, Ö. and Çomoğlu, T. (2016). Nanotaşıyıcı sistemlerde hedeflendirme. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 40(3), 62–79.
  • Saad, M., Garbuzenko, O.B., Ber, E., Chandna, P., Khandare, J.J., Pozharov, V.P., Minko, T. (2008). Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging?. Journal of Controlled Release, 130(2), 107–114.
  • Taratula, O., Schumann, C., Naleway, M.A., Pang, A.J., Chon, K.J., Taratula, O. (2013). A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Molecular Pharmaceutics, 10(10), 3946–3958.
  • Sapra, P., Tyagi, P., Allen, T. (2005). Ligand-targeted liposomes for cancer treatment. Current Drug Delivery, 2(4), 369–381.
  • Zhao, Y.Z., Dai, D.D., Lu, C.T., Chen, L.J., Lin, M., Shen, X.T., Li, X.K., Zhang, M., Jiang, X., Jin, R.R., Li, X., Lv, H.F., Cai, L., Huang, P.T. (2013). Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Letters, 330(1), 74–83.
  • Saesoo, S., Sathornsumetee, S., Anekwiang, P., Treetidnipa, C., Thuwajit, P., Bunthot, S., Maneeprakorn, W., Maurizi, L., Hofmann, H., Rungsardthong, R.U., Saengkrit, N. (2018). Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids and Surfaces B: Biointerfaces, 161, 497–507.
  • Wen, C.J., Zhang, L.W., Al-Suwayeh, S.A., Yen, T.C., Fang, J.Y. (2012). Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. International Journal of Nanomedicine, 7, 1599–1611.
  • Al-Jamal, W.T. Al-Jamal, K.T, Tian, B., Lacerda, L., Bomans, P.H., Frederik, P.M., Kostarelos, K. (2008). Lipid - Quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano, 2(3), 408–418.
  • Al-Jamal, W.T. and Kostarelos, K. (2011). Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts of Chemical Research, 44(10), 1094–1104.
  • Yong, K.T., Roy, I., Swihart, M.T., Prasad, P.N. (2009). Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. Journal of Materials Chemistry, 19, 4655–4672.
  • Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S. (2005). In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 16(1), 63–72.
  • Xu, G., Mahajan, S., Roy, I., Yong, K.T. (2013). Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Frontiers in Pharmacology, 4, 140.
  • Huang, H.-K., Yan, J., Liu, P., Zhao, B.-Y., Cao, Y., Zhang, X.-F. (2017). A novel cancer nanotheranostics system based on quantum dots encapsulated by a polymer-prodrug with controlled release behaviour. Australian Journal of Chemistry, 70(12), 1302–1311.
  • Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P.W., Langer, R., Farokhzad, O.C. (2007). Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070.
  • Silindir, M., Erdoğan, S., Özer, A.Y., Maia, S. (2012). Liposomes and their applications in molecular imaging. Journal of Drug Targeting, 20(5), 401–415.
  • Cole, J.T. and Holland, N.B. (2015). Multifunctional nanoparticles for use in theranostic applications. Drug Delivery and Translational Research, 5(3), 295–309.
  • Pysz, M.A., Gambhir, S.S., Willmann, J.K. (2010). Molecular imaging: current status and emerging strategies. Clinical Radiology, 65(7), 500–516.
  • Kao, H., Lin, Y.Y., Chen, C.C., Chi, K.H., Tien, D.C., Hsia, C.C., Lin, M.H., Wang, H.E. (2013). Evaluation of EGFR-targeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorganic & Medicinal Chemistry Letters, 23(11), 3180–3185.
  • Gambhir, S.S. (2002). Molecular imaging of cancer with positron emission tomography. Nature Reviews Cancer, 2(9), 683–693.
  • Chen, F., Hong, H., Zhang, Y., Valdovinos, H.F., Shi, S., Kwon, G.S., Theuer, C.P., Barnhart, T.E., Cai, W. (2013). In vivo tumor targeting and ımage-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano, 7(10), 9027–9039.
  • Wang, C., Ravi, S., Garapati, U.S., Das, M., Howell, M., MallelaMallela, J., Alwarapan, S., Mohapatra, S.S., Mohapatra, S. (2013). Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: A theranostic platform for tumor-targeted codelivery of drugs, genes and MRI contrast agents. Journal of Materials Chemistry B, 1(35), 4396–4405.
  • Panchapakesan, B., Book-Newell, B., Sethu, P., Rao, M., Irudayaraj, J. (2011). Gold nanoprobes for theranostics. Nanomedicine, 6(10), 1787–1811.
  • Lee, S., Xie, J., Chen, X. (2010). Activatable molecular probes for cancer imaging. Current Topics in Medicinal Chemistry, 10(11), 1135–1144.
  • Lee, S., Xie, J., Chen, X. (2010). Peptide-based probes for targeted molecular imaging. Biochemistry, 49(7), 1364–1376.
  • Tyagi, S. and Kramer, F.R. (1996). Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14(3), 303–308.
  • Gültekin, N., Karaoǧlu, K., Küçükates, E. (2008). Hücrede apoptoz ve saǧkalım mekanizmalarinin keşfedilmesi ve yeni potansiyel tedavi stratejileri. Turk Kardiyoloji Dernegi Arsivi, 36(2), 120–130.
  • Kim, K. Lee, M., Park, H., Kim, J.-H., Kim, S., Chung, H., Choi, K., Kim, I.-S., Seong, B.L., Kwon, I.C. (2006). Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. Journal of the American Chemical Society, 128(11), 3490–3491.
  • Lee, S., Choi, K.Y., Chung, H., Ryu, J.H., Lee, A., Koo, H., Youn, I.C., Park, J.H., Kim, I.S., Kim, S.Y., Chen, X., Jeong, S.Y., Kwon, I.C., Kim, K., Choi, K. (2011). Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe. Bioconjugate Chemistry, 22(2), 125–131.
  • Huang, X., Swierczewska, M., Choi, K.Y., Zhu, L., Bhirde, A., Park, J., Kim, K., Xie, J., Niu, G., Lee, K.C., Lee, S., Chen, X. (2012). Multiplex imaging of an intracellular proteolytic cascade by using a broad-spectrum nanoquencher. Angewandte Chemie - International Edition, 51(7), 1625–1630.
  • Chen, Y. Xianyu, Y., Wu, J., Yin, B., Jiang, X. (2016). Click chemistry-mediated nanosensors for biochemical assays. Theranostics, 6(7), 969–985.
  • Brennan, J.L., Hatzakis, N.S., Tshikhudo, T.R., Dirvianskyte, N., Razumas, V., Patkar, S., Vind, J., Svendsen, A., Nolte, R.J., Rowan, A.E., Brust, M. (2006). Bionanoconjugation via click chemistry: The creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chemistry, 17(6), 1373–1375.
  • Cutler, J.I., Zheng, D., Xu, X., Giljohann, D.A., Mirkin, C.A. (2010). Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Letters, 10(4), 1477–1480.
  • Chen, L., Li, H., He, H., Wu, H., Jin, Y. (2015). Smart plasmonic glucose nanosensors as generic theranostic agents for targeting-free cancer cell screening and killing. Analytical Chemistry, 87(13), 6868–6874.
  • Xia, Z., Xing, Y., So, M.K., Koh, A.L., Sinclair, R., Rao, J. (2008). Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Analytical Chemistry, 80(22), 8649–8655.
  • Wang, Q., Wang, C., Wang, X., Zhang, Y., Wu, Y., Dong, C., Shuang, S. (2019). Construction of CPs@MnO2-AgNPs as a multifunctional nanosensor for glutathione sensing and cancer theranostics. Nanoscale, 11, 18845–18853.
  • Perez, J.M., Josephson, L., Weissleder, R. (2004). Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem, 5(3), 261–264.
  • Vogenberg, F.R., Barash, C.I., Pursel, M. (2010). Personalized medicine - Part 1: Evolution and development into theranostics. Pharmacy and Therapeutics, 35(10), 560–576.
  • Bamrungsap, S., Zhao, Z., Chen, T., Wang, L., Li, C., Fu, T., Tan, W. (2012). Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine London England, 7(8), 1253–1271.
  • Sinha, R., Kim, G.J., Nie, S., Shin, D.M. (2006). Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Molecular Cancer Therapeutics, 5(8), 1909–1917.
  • Farokhzad, O.C., Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano, 3(1), 16–20.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Meliha Ekinci 0000-0003-1319-3756

Derya İlem-özdemir 0000-0002-1062-498X

Yayımlanma Tarihi 18 Ocak 2021
Gönderilme Tarihi 9 Nisan 2020
Kabul Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ekinci, M., & İlem-özdemir, D. (2021). NANOTERANOSTİKLER. Journal of Faculty of Pharmacy of Ankara University, 45(1), 131-155. https://doi.org/10.33483/jfpau.717067
AMA Ekinci M, İlem-özdemir D. NANOTERANOSTİKLER. Ankara Ecz. Fak. Derg. Ocak 2021;45(1):131-155. doi:10.33483/jfpau.717067
Chicago Ekinci, Meliha, ve Derya İlem-özdemir. “NANOTERANOSTİKLER”. Journal of Faculty of Pharmacy of Ankara University 45, sy. 1 (Ocak 2021): 131-55. https://doi.org/10.33483/jfpau.717067.
EndNote Ekinci M, İlem-özdemir D (01 Ocak 2021) NANOTERANOSTİKLER. Journal of Faculty of Pharmacy of Ankara University 45 1 131–155.
IEEE M. Ekinci ve D. İlem-özdemir, “NANOTERANOSTİKLER”, Ankara Ecz. Fak. Derg., c. 45, sy. 1, ss. 131–155, 2021, doi: 10.33483/jfpau.717067.
ISNAD Ekinci, Meliha - İlem-özdemir, Derya. “NANOTERANOSTİKLER”. Journal of Faculty of Pharmacy of Ankara University 45/1 (Ocak 2021), 131-155. https://doi.org/10.33483/jfpau.717067.
JAMA Ekinci M, İlem-özdemir D. NANOTERANOSTİKLER. Ankara Ecz. Fak. Derg. 2021;45:131–155.
MLA Ekinci, Meliha ve Derya İlem-özdemir. “NANOTERANOSTİKLER”. Journal of Faculty of Pharmacy of Ankara University, c. 45, sy. 1, 2021, ss. 131-55, doi:10.33483/jfpau.717067.
Vancouver Ekinci M, İlem-özdemir D. NANOTERANOSTİKLER. Ankara Ecz. Fak. Derg. 2021;45(1):131-55.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.