Araştırma Makalesi
BibTex RIS Kaynak Göster

UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD

Yıl 2018, Cilt: 42 Sayı: 1, 22 - 32, 31.01.2018

Öz

Objective: Increasing evidence demonstrate that the expression of miRNAs is affected by several known
toxicants and environmental contaminants. To evaluate the toxicity effect of the pesticides including benomyl,
carbaryl, malathion, diazinon on male Balb/c mice, expression profile of two oncogenic miRNAs were analysed
by real-time PCR.

Material and Method:The 72 male mice were divided into 6 groups (n = 6 per group), including control
(0 mg/kg), malathion (30 mg/kg), carbaryl (20 mg/kg), benomyl (30 mg/kg), diazinon (20 mg/kg) and mixture
of all pesticides. Mice were intragastrically gavaged for 60 days, then sacrificed on the 30(th) and 60(th) day.
The levels of oncogenic mir-17 and mir-221 in the serum were measured.

Result and Discussion: The results showed that compared with the normal controls, mir-17 and mir221 were overexpressed in all treatment groups during 2 months. The expression level of miR-17 and mir-221
after 60 days were 9.2-17.7 fold and 1.9-4 fold higher than the first month respectively. The lowest increase
was 1.9-fold, belongs to mir-221, which is still enough for easy diagnosis. These results provide new insights
into the negative pesticide’s carcinogenic probability via dysregulation of two oncogenic miRNAs. Our results
suggest that due to positive association between mir-17 and mir-221 levels and the risk of toxicity, these miRNAs
might be a useful biomarker in malignancy prediction and have a diagnostic value. 

Kaynakça

  • Forouzesh, A., Zand, E., Soufizadeh, S., and Samadi Foroushani, S. (2015). Classification of herbicides according to chemical family for weed resistance management strategies–an update. Weed Research, 55, 334-358.
  • Ye, M., Beach, J., Martin, J.W., and Senthilselvan, A. (2013). Occupational pesticide exposures and respiratory health. International Journal of Environmental Research and Public Health, 10, 6442-6471.
  • Nakahara, K., Alzoreky, N.S., Yoshihashi, T., Nguyen, H.T., and Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Japan Agricultural Research Quarterly, 37, 249-252.
  • Blain, P. (2001). Adverse health effects after low level exposure to organophosphates. (BMJ Publishing Group Ltd).
  • Karami-Mohajeri, S., and Abdollahi, M. (2011). Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Human & Experimental Toxicology, 30, 1119-1140.
  • Xiao, X., Clark, J.M., and Park, Y. (2017). Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food and Chemical Toxicology.
  • Baldi, I., Filleul, L., Mohammed-Brahim, B., Fabrigoule, C., Dartigues, J.-F., Schwall, S., Drevet, J.-P., Salamon, R., and Brochard, P. (2001). Neuropsychologic effects of long-term exposure to pesticides: results from the French Phytoner study. Environmental Health Perspectives, 109, 839.
  • Chapin, R.E., Robbins, W.A., Schieve, L.A., Sweeney, A.M., Tabacova, S.A., and Tomashek, K.M. (2004). Off to a good start: the influence of pre-and periconceptional exposures, parental fertility, and nutrition on children's health. Environmental Health Perspectives, 112, 69.
  • Sathyanarayana, S., Basso, O., Karr, C.J., Lozano, P., Alavanja, M., Sandler, D.P., and Hoppin, J.A. (2010). Maternal pesticide use and birth weight in the agricultural health study. Journal of Agromedicine, 15, 127-136.
  • Wahid, F., Shehzad, A., Khan, T., and Kim, Y.Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803, 1231-1243.
  • Bazot, Q., Paschos, K., Skalska, L., Kalchschmidt, J.S., Parker, G.A., and Allday, M.J. (2015). Epstein-Barr virus proteins EBNA3A and EBNA3C together induce expression of the oncogenic microRNA cluster miR-221/miR-222 and ablate expression of its target p57KIP2. PLoS Pathogens, 11, e1005031.
  • Wang, J., Chen, J., and Sen, S. (2016). MicroRNA as biomarkers and diagnostics. Journal of Cellular Physiology, 231, 25-30.
  • Hong, W.Y., and Cho, W.C. (2015). The role of microRNAs in toxicology. Archives of Toxicology, 89, 319-325.
  • Shimono, Y., Mukohyama, J., Nakamura, S.-i., and Minami, H. (2015). MicroRNA regulation of human breast cancer stem cells. Journal of Clinical Medicine, 5, 2.
  • O'donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Mycregulated microRNAs modulate E2F1 expression. Nature, 435, 839.
  • Di Leva, G., Garofalo, M., and Croce, C.M. (2014). MicroRNAs in cancer. Annual Review of Pathology: Mechanisms of Disease, 9, 287-314.
  • Vaissière, T., Sawan, C., and Herceg, Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation Research/Reviews in Mutation Research, 659, 40-48.
  • Sutherland, J.E., and Costa, M. (2003). Epigenetics and the environment. Annals of the New York Academy of Sciences, 983, 151-160.
  • Chaudhari, U., Nemade, H., Gaspar, J.A., Hescheler, J., Hengstler, J.G., and Sachinidis, A. (2016). MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cellderived cardiomyocytes. Archives of Toxicology, 90, 3087-3098.
  • Zhao, Y., Ransom, J.F., Li, A., Vedantham, V., von Drehle, M., Muth, A.N., Tsuchihashi, T., McManus, M.T., Schwartz, R.J., and Srivastava, D. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303-317.
  • Baccarelli, A., and Bollati, V. (2009). Epigenetics and environmental chemicals. Current Opinion in Pediatrics, 21, 243.
  • Kim, S.J., Yu, S.-Y., Yoon, H.-J., Lee, S.Y., Youn, J.-P., and Hwang, S.Y. (2015). Epigenetic Regulation of miR-22 in a BPA-exposed Human Hepatoma Cell. BioChip Journal, 9, 76-84.
  • Tilghman, S.L., Bratton, M.R., Segar, H.C., Martin, E.C., Rhodes, L.V., Li, M., McLachlan, J.A., Wiese, T.E., Nephew, K.P., and Burow, M.E. (2012). Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PloS One, 7, e32754.
  • Balkan, S., and Aktag, T. (2005). Study on the liver functions in rats exposed to benomyl. Journal of Biological Sciences, 5, 666-669.
  • Cancer, I.A.f.R.o. (2015). IARC Monographs Volume 112: evaluation of five organophosphate insecticides and herbicides. Lyon: World Health Organization.
  • Rouabhi, R. (2010). Introduction and toxicology of fungicides. In Fungicides. (InTech)
  • Li, Y., Casey, S.C., Choi, P.S., and Felsher, D.W. (2014). miR-17–92 explains MYC oncogene addiction. Molecular & Cellular Oncology, 1, e970092.
  • Garofalo, M., Quintavalle, C., Romano, G., M Croce, C., and Condorelli, G. (2012). miR221/222 in cancer: their role in tumor progression and response to therapy. Current Molecular Medicine, 12, 27-33.

FARE KANINDA MIR-17 VE MIR-221'İN BENOMİL, KARBARİL, MALATİYON VE DİAZİNON PESTİSİTLERİ İLE UPREGÜLASYONU

Yıl 2018, Cilt: 42 Sayı: 1, 22 - 32, 31.01.2018

Öz

Amaç: Artan kanıtlar miRNA'ların ekspresyonunun bazı bilinen toksik maddeler ve çevresel kirleticiler
tarafından etkilendiğini göstermektedir. Pestisitlerin toksisite etkisini değerlendirmek üzere erkek Balb/c
farelerinde benomil, karbaril, malatiyon, diazinonun onkojenik miRNA ekspresyona etkisi gerçek zamanlı PCR
ile analiz edildi.

Gereç ve Yöntem: 72 erkek fare 6 gruba ayrıldı: kontrol (0 mg/kg), malatiyon (30 mg/kg), karbaril (20
mg/kg), benomil (30 mg/kg) ve diazinon (20 mg/kg). Fareler 60 gün boyunca intragastrik yoldan sonda ile
beslendi, daha sonra 30. ve 60. gününde öldürüldü. Serumda onkojenik mir-17 ve mir-221 düzeyleri ölçüldü.

Sonuç ve Tartışma: Sonuçlar normal kontrollerle karşılaştırıldığında, mir-17 ve mir-221 tüm tedavi
gruplarında 2 ay boyunca aşırı eksprese edildiği görüldü. Mir-17 ve mir-221 ekspresyon düzeyi ilk aya göre 60
gün sonra sırasıyla 9,2-17,7 kat ve 1,9-4 kat daha yüksekti. En düşük artış 1,9 kat ile mir-221'e aittir ki, hala
kolay teşhis için yeterlidir. Bu sonuçlar iki onkojenik miRNA’nın disregülasyonuyla pestisitlerin negatif
karsinojenik olasılığına yeni bilgiler sağlamaktadır. Sonuçlarımız mir-17 ve mir-221 seviyeleri ve toksisite riski
arasındaki pozitif ilişki nedeniyle, bu miRNA'ların malignite tahmininde yararlı bir biyobelirteç olabileceğini
ve diyagnostik değeri olduğunu göstermektedir.

Kaynakça

  • Forouzesh, A., Zand, E., Soufizadeh, S., and Samadi Foroushani, S. (2015). Classification of herbicides according to chemical family for weed resistance management strategies–an update. Weed Research, 55, 334-358.
  • Ye, M., Beach, J., Martin, J.W., and Senthilselvan, A. (2013). Occupational pesticide exposures and respiratory health. International Journal of Environmental Research and Public Health, 10, 6442-6471.
  • Nakahara, K., Alzoreky, N.S., Yoshihashi, T., Nguyen, H.T., and Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Japan Agricultural Research Quarterly, 37, 249-252.
  • Blain, P. (2001). Adverse health effects after low level exposure to organophosphates. (BMJ Publishing Group Ltd).
  • Karami-Mohajeri, S., and Abdollahi, M. (2011). Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Human & Experimental Toxicology, 30, 1119-1140.
  • Xiao, X., Clark, J.M., and Park, Y. (2017). Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food and Chemical Toxicology.
  • Baldi, I., Filleul, L., Mohammed-Brahim, B., Fabrigoule, C., Dartigues, J.-F., Schwall, S., Drevet, J.-P., Salamon, R., and Brochard, P. (2001). Neuropsychologic effects of long-term exposure to pesticides: results from the French Phytoner study. Environmental Health Perspectives, 109, 839.
  • Chapin, R.E., Robbins, W.A., Schieve, L.A., Sweeney, A.M., Tabacova, S.A., and Tomashek, K.M. (2004). Off to a good start: the influence of pre-and periconceptional exposures, parental fertility, and nutrition on children's health. Environmental Health Perspectives, 112, 69.
  • Sathyanarayana, S., Basso, O., Karr, C.J., Lozano, P., Alavanja, M., Sandler, D.P., and Hoppin, J.A. (2010). Maternal pesticide use and birth weight in the agricultural health study. Journal of Agromedicine, 15, 127-136.
  • Wahid, F., Shehzad, A., Khan, T., and Kim, Y.Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803, 1231-1243.
  • Bazot, Q., Paschos, K., Skalska, L., Kalchschmidt, J.S., Parker, G.A., and Allday, M.J. (2015). Epstein-Barr virus proteins EBNA3A and EBNA3C together induce expression of the oncogenic microRNA cluster miR-221/miR-222 and ablate expression of its target p57KIP2. PLoS Pathogens, 11, e1005031.
  • Wang, J., Chen, J., and Sen, S. (2016). MicroRNA as biomarkers and diagnostics. Journal of Cellular Physiology, 231, 25-30.
  • Hong, W.Y., and Cho, W.C. (2015). The role of microRNAs in toxicology. Archives of Toxicology, 89, 319-325.
  • Shimono, Y., Mukohyama, J., Nakamura, S.-i., and Minami, H. (2015). MicroRNA regulation of human breast cancer stem cells. Journal of Clinical Medicine, 5, 2.
  • O'donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Mycregulated microRNAs modulate E2F1 expression. Nature, 435, 839.
  • Di Leva, G., Garofalo, M., and Croce, C.M. (2014). MicroRNAs in cancer. Annual Review of Pathology: Mechanisms of Disease, 9, 287-314.
  • Vaissière, T., Sawan, C., and Herceg, Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation Research/Reviews in Mutation Research, 659, 40-48.
  • Sutherland, J.E., and Costa, M. (2003). Epigenetics and the environment. Annals of the New York Academy of Sciences, 983, 151-160.
  • Chaudhari, U., Nemade, H., Gaspar, J.A., Hescheler, J., Hengstler, J.G., and Sachinidis, A. (2016). MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cellderived cardiomyocytes. Archives of Toxicology, 90, 3087-3098.
  • Zhao, Y., Ransom, J.F., Li, A., Vedantham, V., von Drehle, M., Muth, A.N., Tsuchihashi, T., McManus, M.T., Schwartz, R.J., and Srivastava, D. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303-317.
  • Baccarelli, A., and Bollati, V. (2009). Epigenetics and environmental chemicals. Current Opinion in Pediatrics, 21, 243.
  • Kim, S.J., Yu, S.-Y., Yoon, H.-J., Lee, S.Y., Youn, J.-P., and Hwang, S.Y. (2015). Epigenetic Regulation of miR-22 in a BPA-exposed Human Hepatoma Cell. BioChip Journal, 9, 76-84.
  • Tilghman, S.L., Bratton, M.R., Segar, H.C., Martin, E.C., Rhodes, L.V., Li, M., McLachlan, J.A., Wiese, T.E., Nephew, K.P., and Burow, M.E. (2012). Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PloS One, 7, e32754.
  • Balkan, S., and Aktag, T. (2005). Study on the liver functions in rats exposed to benomyl. Journal of Biological Sciences, 5, 666-669.
  • Cancer, I.A.f.R.o. (2015). IARC Monographs Volume 112: evaluation of five organophosphate insecticides and herbicides. Lyon: World Health Organization.
  • Rouabhi, R. (2010). Introduction and toxicology of fungicides. In Fungicides. (InTech)
  • Li, Y., Casey, S.C., Choi, P.S., and Felsher, D.W. (2014). miR-17–92 explains MYC oncogene addiction. Molecular & Cellular Oncology, 1, e970092.
  • Garofalo, M., Quintavalle, C., Romano, G., M Croce, C., and Condorelli, G. (2012). miR221/222 in cancer: their role in tumor progression and response to therapy. Current Molecular Medicine, 12, 27-33.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Arezoo Vıew Bu kişi benim

Aras Rafıee Bu kişi benim

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 21 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 42 Sayı: 1

Kaynak Göster

APA Vıew, A., & Rafıee, A. (2018). UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD. Journal of Faculty of Pharmacy of Ankara University, 42(1), 22-32.
AMA Vıew A, Rafıee A. UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD. Ankara Ecz. Fak. Derg. Ocak 2018;42(1):22-32.
Chicago Vıew, Arezoo, ve Aras Rafıee. “UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD”. Journal of Faculty of Pharmacy of Ankara University 42, sy. 1 (Ocak 2018): 22-32.
EndNote Vıew A, Rafıee A (01 Ocak 2018) UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD. Journal of Faculty of Pharmacy of Ankara University 42 1 22–32.
IEEE A. Vıew ve A. Rafıee, “UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD”, Ankara Ecz. Fak. Derg., c. 42, sy. 1, ss. 22–32, 2018.
ISNAD Vıew, Arezoo - Rafıee, Aras. “UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD”. Journal of Faculty of Pharmacy of Ankara University 42/1 (Ocak 2018), 22-32.
JAMA Vıew A, Rafıee A. UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD. Ankara Ecz. Fak. Derg. 2018;42:22–32.
MLA Vıew, Arezoo ve Aras Rafıee. “UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD”. Journal of Faculty of Pharmacy of Ankara University, c. 42, sy. 1, 2018, ss. 22-32.
Vancouver Vıew A, Rafıee A. UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD. Ankara Ecz. Fak. Derg. 2018;42(1):22-3.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.