Araştırma Makalesi
BibTex RIS Kaynak Göster

POLİETİLEN OKSİT/SODYUM ALJİNAT BONCUKLARININ VE/VEYA LİFLERİNİN ÜRETİMİ VE MORFOLOJİK KONTROLÜ: ELEKTROEĞİRMEDE VİSKOZİTE VE İLETKENLİĞİN ETKİSİ

Yıl 2023, Cilt: 47 Sayı: 2, 420 - 429, 20.05.2023
https://doi.org/10.33483/jfpau.1216758

Öz

Amaç: Çalışmanın amacı, PEO/NaAlg polimer çözeltilerinin viskozite ve iletkenliklerini belirlemek, PEO/NaAlg boncukları, boncuk-iplik lifleri ve lifleri elektroeğirme yöntemiyle formüle etmek ve bunlar üzerinde ileri morfolojik karakterizasyon çalışmaları yapmaktır.
Gereç ve Yöntem: PEO ve NaAlg derişiminin ve oranlarının çözeltilerin eğrilebilirliği, viskozitesi ve iletkenliği ve ayrıca PEO/NaAlg elektroeğrilmiş liflerin ve boncukların morfolojik özellikleri (boncukların uzunluğu, genişliği ve en boy oranı, boncuk sayısı) üzerindeki etkisi incelenmiştir.
Sonuç ve Tartışma: Sonuç olarak, doku mühendisliği, yara örtüsü, ilaç taşıyıcı sistem gibi tıbbi ve biyolojik uygulamalar için değerli olan PEO/NaAlg boncuklar ve/veya lifler elektroeğirme yöntemiyle üretilmiştir. Çözeltilerin viskozite ve iletkenliği ile üretilen materyalin morfolojik özelliklerinin PEO ve NaAlg derişiminden ve oranlarından etkilendiği bulunmuştur. PEO varlığında iletkenlikteki artış sayesinde eğrilebilirlik iyileştirilmiştir. Daha düşük viskozite ve iletkenlik, genellikle daha küçük, daha fazla sayıda ve daha büyük alana sahip boncukların üretilmesine neden olmuştur. PEO/NaAlg elektroeğrilmiş materyallerin morfolojik özellikleri, çalışmada incelenen parametreler kontrol edilerek değiştirilebilir.

Kaynakça

  • 1. Eren Boncu, T., Ozdemir, N., Uskudar Guclu, A. (2020). Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities. Drug Development and Industrial Pharmacy, 46(1), 109-121. [CrossRef]
  • 2. Balusamy, B., Senthamizhan, A. Uyar, T. (2020). Electrospun nanofibers for wound dressing and tissue engineering applications. Hacettepe Journal of Biology and Chemistry, 48(5), 459-481. [CrossRef]
  • 3. Li, K., Zhu, J., Guan, G., Wu, H. (2019). Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. International Journal of Biological Macromolecules, 122, 485-492. [CrossRef]
  • 4. Szekalska, M., Wróblewska, M., Trofimiuk, M., Basa, A., Winnicka, K. (2019). Alginate oligosaccharides affect mechanical properties and antifungal activity of alginate buccal films with posaconazole. Marine Drugs, 17, 692-718. [CrossRef]
  • 5. Spadari, C.C., Lopes, L.B., Ishida, K. (2017). Potential use of alginate-based carriers as antifungal delivery system. Frontiers in Microbiology, 8(97), 1-11. [CrossRef]
  • 6. Kilicarslan, M., Ilhan, M., Inal, O., Orhan, K. (2018). Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. European Journal of Pharmaceutical Sciences, 123, 441-451. [CrossRef]
  • 7. Hu, C., Gong, R.H., Zhou, F.L. (2015). Electrospun sodium alginate/polyethylene oxide fibers and nanocoated yarns. International Journal of Polymer Science, 1-12. [CrossRef]
  • 8. Ma, L., Deng, L. Chen, J., (2014). Applications of poly(ethylene oxide) in controlled release tablet systems: a review. Drug Development and Industrial Pharmacy, 40(7), 845-851. [CrossRef]
  • 9. Khajavi, R., Abbasipour, M. (2017). Controlling nanofiber morphology by the electrospinning process. In: M. Afshari (Eds.), Electrospun Nanofiber, (pp. 109-123). Woodhead Publishing. [CrossRef]
  • 10. Arumugam, G.K., Khan, S., Heiden, P.A. (2009). Comparison of the effects of an ionic liquid and other salts on the properties of electrospun fibers, 2-poly(vinyl alcohol). Macromolecular Materials and Engineering, 294(1), 45-53. [CrossRef]
  • 11. Li, D., Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 16(14), 1151-1170. [CrossRef]
  • 12. Zupančič, Š., Baumgartner, S., Lavrič, Z., Petelin, M., Kristl, J. (2015). Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. Journal of Drug Delivery Science and Technology, 30, 408-416. [CrossRef]
  • 13. Eren Boncu, T. Ozdemir, N. (2019). The effects of polymeric molar mass, concentration, and adding of different surfactants on the electrospun poly(vinyl alcohol) nanofibers. Latin American Journal of Pharmacy, 38(8), 1552-1561.
  • 14. Zhao, H., Chi, H. (2018). Electrospun bead-on-string fibers: useless or something of value?, in novel aspects of nanofibers. In: T. Lin (Eds.), Novel Aspects of Nanofibers, (pp. 87-102).InTechOpen. [CrossRef]
  • 15. Fong, H., Chun, I., Reneker, D.H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. [CrossRef]
  • 16. Srikar, R., Yarin, A.L., Megaridis, C.M., Bazilevsky, A.V., Kelley, E. (2008). Desorption-limited mechanism of release from polymer nanofibers. Langmuir, 24, 965-974. [CrossRef]
  • 17. Koski, A., Yim, K., Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497. [CrossRef]
  • 18. Reneker, D.H., Yarin, A.L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387-2425. [CrossRef]
  • 19. Son, W.K., Youk, J.H., Lee, T.S., Park, W.H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959-2966. [CrossRef]
  • 20. Jung, Y.H., Kim, H.Y., Lee, D.R., Park, S.Y., Khil, M.S. (2005). Characterization of PVOH nonwoven mats prepared from surfactant-polymer system via electrospinning. Macromolecular Research, 13(5), 385-390. [CrossRef]
  • 21. Beglou, M.J., Haghi, A.K., (2008). Electrospun biodegdadable and biocompatible natural nanofibers: A detailed review. Cellulose Chemistry and Technology, 42(9), 441-462.

FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING

Yıl 2023, Cilt: 47 Sayı: 2, 420 - 429, 20.05.2023
https://doi.org/10.33483/jfpau.1216758

Öz

Objective: The aim of the study is to determine the viscosity and conductivity of PEO/NaAlg polymer solutions, to formulate PEO/NaAlg beads, bead-on-string fibers and fibers via electrospinning, and to perform advanced morphological characterization studies on them.
Material and Method: Effect of PEO and NaAlg concentration and ratio of them on spinnability, viscosity and conductivity of solutions, and also on the morphological properties of PEO/NaAlg electrospun fibers, and beads (length, width and aspect ratio of beads, number of beads and bead area) were investigated.
Result and Discussion: As a result, electrospun materials were produced using PEO/NaAlg beads and/or fibers, which are valuable for medical and biological applications such as tissue engineering, wound dressing, drug delivery system. Viscosity and conductivity of solutions, and morphological properties of the obtained materials were found to be affected by PEO and NaAlg concentration and the ratio of them. Spinnability was improved thanks to the increase in conductivity in the presence of PEO. The lower viscosity and conductivity resulted in the production of beads that were generally smaller and greater in number in the material and having higher area. The morphological properties of PEO/NaAlg electrospun materials can be modified by controlling the parameters examined in the study.

Kaynakça

  • 1. Eren Boncu, T., Ozdemir, N., Uskudar Guclu, A. (2020). Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities. Drug Development and Industrial Pharmacy, 46(1), 109-121. [CrossRef]
  • 2. Balusamy, B., Senthamizhan, A. Uyar, T. (2020). Electrospun nanofibers for wound dressing and tissue engineering applications. Hacettepe Journal of Biology and Chemistry, 48(5), 459-481. [CrossRef]
  • 3. Li, K., Zhu, J., Guan, G., Wu, H. (2019). Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. International Journal of Biological Macromolecules, 122, 485-492. [CrossRef]
  • 4. Szekalska, M., Wróblewska, M., Trofimiuk, M., Basa, A., Winnicka, K. (2019). Alginate oligosaccharides affect mechanical properties and antifungal activity of alginate buccal films with posaconazole. Marine Drugs, 17, 692-718. [CrossRef]
  • 5. Spadari, C.C., Lopes, L.B., Ishida, K. (2017). Potential use of alginate-based carriers as antifungal delivery system. Frontiers in Microbiology, 8(97), 1-11. [CrossRef]
  • 6. Kilicarslan, M., Ilhan, M., Inal, O., Orhan, K. (2018). Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. European Journal of Pharmaceutical Sciences, 123, 441-451. [CrossRef]
  • 7. Hu, C., Gong, R.H., Zhou, F.L. (2015). Electrospun sodium alginate/polyethylene oxide fibers and nanocoated yarns. International Journal of Polymer Science, 1-12. [CrossRef]
  • 8. Ma, L., Deng, L. Chen, J., (2014). Applications of poly(ethylene oxide) in controlled release tablet systems: a review. Drug Development and Industrial Pharmacy, 40(7), 845-851. [CrossRef]
  • 9. Khajavi, R., Abbasipour, M. (2017). Controlling nanofiber morphology by the electrospinning process. In: M. Afshari (Eds.), Electrospun Nanofiber, (pp. 109-123). Woodhead Publishing. [CrossRef]
  • 10. Arumugam, G.K., Khan, S., Heiden, P.A. (2009). Comparison of the effects of an ionic liquid and other salts on the properties of electrospun fibers, 2-poly(vinyl alcohol). Macromolecular Materials and Engineering, 294(1), 45-53. [CrossRef]
  • 11. Li, D., Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 16(14), 1151-1170. [CrossRef]
  • 12. Zupančič, Š., Baumgartner, S., Lavrič, Z., Petelin, M., Kristl, J. (2015). Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. Journal of Drug Delivery Science and Technology, 30, 408-416. [CrossRef]
  • 13. Eren Boncu, T. Ozdemir, N. (2019). The effects of polymeric molar mass, concentration, and adding of different surfactants on the electrospun poly(vinyl alcohol) nanofibers. Latin American Journal of Pharmacy, 38(8), 1552-1561.
  • 14. Zhao, H., Chi, H. (2018). Electrospun bead-on-string fibers: useless or something of value?, in novel aspects of nanofibers. In: T. Lin (Eds.), Novel Aspects of Nanofibers, (pp. 87-102).InTechOpen. [CrossRef]
  • 15. Fong, H., Chun, I., Reneker, D.H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. [CrossRef]
  • 16. Srikar, R., Yarin, A.L., Megaridis, C.M., Bazilevsky, A.V., Kelley, E. (2008). Desorption-limited mechanism of release from polymer nanofibers. Langmuir, 24, 965-974. [CrossRef]
  • 17. Koski, A., Yim, K., Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497. [CrossRef]
  • 18. Reneker, D.H., Yarin, A.L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387-2425. [CrossRef]
  • 19. Son, W.K., Youk, J.H., Lee, T.S., Park, W.H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959-2966. [CrossRef]
  • 20. Jung, Y.H., Kim, H.Y., Lee, D.R., Park, S.Y., Khil, M.S. (2005). Characterization of PVOH nonwoven mats prepared from surfactant-polymer system via electrospinning. Macromolecular Research, 13(5), 385-390. [CrossRef]
  • 21. Beglou, M.J., Haghi, A.K., (2008). Electrospun biodegdadable and biocompatible natural nanofibers: A detailed review. Cellulose Chemistry and Technology, 42(9), 441-462.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Eren Böncü 0000-0003-4610-6882

Erken Görünüm Tarihi 17 Mayıs 2023
Yayımlanma Tarihi 20 Mayıs 2023
Gönderilme Tarihi 13 Aralık 2022
Kabul Tarihi 4 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 47 Sayı: 2

Kaynak Göster

APA Eren Böncü, T. (2023). FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING. Journal of Faculty of Pharmacy of Ankara University, 47(2), 420-429. https://doi.org/10.33483/jfpau.1216758
AMA Eren Böncü T. FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING. Ankara Ecz. Fak. Derg. Mayıs 2023;47(2):420-429. doi:10.33483/jfpau.1216758
Chicago Eren Böncü, Tuğba. “FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 2 (Mayıs 2023): 420-29. https://doi.org/10.33483/jfpau.1216758.
EndNote Eren Böncü T (01 Mayıs 2023) FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING. Journal of Faculty of Pharmacy of Ankara University 47 2 420–429.
IEEE T. Eren Böncü, “FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING”, Ankara Ecz. Fak. Derg., c. 47, sy. 2, ss. 420–429, 2023, doi: 10.33483/jfpau.1216758.
ISNAD Eren Böncü, Tuğba. “FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING”. Journal of Faculty of Pharmacy of Ankara University 47/2 (Mayıs 2023), 420-429. https://doi.org/10.33483/jfpau.1216758.
JAMA Eren Böncü T. FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING. Ankara Ecz. Fak. Derg. 2023;47:420–429.
MLA Eren Böncü, Tuğba. “FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 2, 2023, ss. 420-9, doi:10.33483/jfpau.1216758.
Vancouver Eren Böncü T. FABRICATION AND CONTROLLING MORPHOLOGY OF POLYETHYLENE OXIDE/SODIUM ALGINATE BEADS AND/OR FIBERS: EFFECT OF VISCOSITY AND CONDUCTIVITY IN ELECTROSPINNING. Ankara Ecz. Fak. Derg. 2023;47(2):420-9.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.