Derleme
BibTex RIS Kaynak Göster

THREE-DIMENSIONAL PRINTING TECHNOLOGY IN TABLET DOSAGE FORM DESIGN AND DEVELOPMENT

Yıl 2024, Cilt: 48 Sayı: 1, 384 - 395, 20.01.2024
https://doi.org/10.33483/jfpau.1353676

Öz

Objective: Three-dimensional (3D) printing, also known as additive manufacturing, has revolutionized various industrial fields such as engineering, architecture and space sciences. As a promising technology in the field of pharmacy in recent years, 3D printing appears as an advantageous approach to produce personalized solid dosage forms, implants and medical devices with high precision and accuracy. This technology has the potential to overcome some of the limitations of traditional pharmaceutical manufacturing processes and offers benefits such as improved dosage form design, increased patient compliance, and reduced manufacturing costs. Within the scope of this review, tablet production methods with 3D printing were examined.
Result and Discussion: Among the different routes for administering dosage forms, the oral route is the most preferred route of administration regarding patient compliance. The production, processing and storage of tablets for oral administration is easier and more economical than other dosage forms. 3D printing enables the formulation and production of tablets with different geometric shapes and different active ingredient release profiles. Although this printing technology basically consists of the same printing stages, it is quite diversified within itself and is divided into seven different methods by the American Society for Testing and Materials. Among these various methods, the melt deposition modeling method, which is very successful in tablet production, has been the subject of many studies. However, tablets and caplets can be produced with all 3D printing methods. However, there is no established framework to demonstrate quality and safety for personalized medicines, and 3D technology may have risks such as counterfeit medicine, proliferation of illegal drugs and mislabeling. For 3D production, it is necessary to adopt good manufacturing practices (GMP), establish standard operating procedures, and conduct quality control (e.g. content uniformity, mass uniformity, dissolution testing in tablets) throughout the entire production line and subsequently on the finished product.

Kaynakça

  • 1. Jamróz, W., Szafraniec, J., Kurek, M., Jachowicz, R. (2018). 3D printing in pharmaceutical and medical applications-recent achievements and challenges. Pharmaceutical Research, 35, 1-22. [CrossRef]
  • 2. Prasad, L.K., Smyth, H. (2016). 3D Printing technologies for drug delivery: A review. Drug Development and Industrial Pharmacy, 42(7), 1019-1031. [CrossRef]
  • 3. Acosta-Vélez, G.F., Zhu, T.Z., Linsley, C.S., Wu, B.M. (2018). Photocurable poly (ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs. International Journal of Pharmaceutics, 546(1-2), 145-153. [CrossRef]
  • 4. Acosta-Vélez, G.F., Wu, B.M. (2016). 3D pharming: Direct printing of personalized pharmaceutical tablets. Polymer Science, 2(1), 11. [CrossRef]
  • 5. Elkasabgy, N.A., Mahmoud, A.A., Maged, A. (2020). 3D printing: An appealing route for customized drug delivery systems. International Journal of Pharmaceutics, 588, 119732. [CrossRef]
  • 6. Haghdadi, N., Laleh, M., Moyle, M., Primig, S. (2021). Additive manufacturing of steels: A review of achievements and challenges. Journal of Materials Science, 56, 64-107. [CrossRef]
  • 7. Sadawarte, S.R., Shambharkar, D.A., Bandopant, P. (2022). Concept of three dimensional printing in pharmacy. World Journal of Pharmaceutical Research, 11(10), 696-706.
  • 8. Shellabear, M., Nyrhilä, O. (2004). DMLS-Development history and state of the art. Laser assisted netshape engineering 4, proceedings of the 4th LANE, 21-24.
  • 9. Beg, S., Almalki, W.H., Malik, A., Farhan, M., Aatif, M., Rahman, Z., Rahman, M. (2020). 3D printing for drug delivery and biomedical applications. Drug Discovery Today, 25(9), 1668-1681. [CrossRef]
  • 10. Anand, N., Singh, D., Singh, G., Kaur, L., Dhawan, R.K., Kaur, N. (2020). 3D printing technology in pharmaceutical delivery system: Recent advancement in innovative approach. FABAD Journal of Pharmaceutical Sciences, 45(3), 253-268.
  • 11. Goole, J., Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International Journal of Pharmaceutics, 499(1-2), 376-394. [CrossRef]
  • 12. Bagheri, A., Jin, J. (2019). Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 1, 593-611. [CrossRef]
  • 13. Norman, J., Madurawe, R.D., Moore, C.M., Khan, M.A., Khairuzzaman, A. (2017). A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced Drug Delivery Reviews, 108, 39-50. [CrossRef]
  • 14. Low, Z.X., Chua, Y.T., Ray, B.M., Mattia, D., Metcalfe, I.S., Patterson, D.A. (2017). Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of Membrane Science, 523, 596-613. [CrossRef]
  • 15. Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., Basit, A.W. (2021). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 329, 743-757. [CrossRef]
  • 16. Economidou, S.N., Lamprou, D.A., Douroumis, D. (2018). 3D printing applications for transdermal drug delivery. International Journal of Pharmaceutics, 544(2), 415-424. [CrossRef]
  • 17. Mohapatra, S., Kar, R.K., Biswal, P.K., Bindhani, S. (2022). Approaches of 3D printing in current drug delivery. Sensors International, 3, 100146. [CrossRef]
  • 18. Mahmood, M.A. (2021). 3D printing in drug delivery and biomedical applications: A state-of-the-art review. Compounds, 1(3), 94-115. [CrossRef]
  • 19. Wang, J., Goyanes, A., Gaisford, S., Basit, A.W. (2016). Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International Journal of Pharmaceutics, 503(1-2), 207-212. [CrossRef]
  • 20. Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., Basit, A.W. (2021). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 329, 743-757. [CrossRef]
  • 21. Kadry, H., Wadnap, S., Xu, C., Ahsan, F. (2019). Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. European Journal of Pharmaceutical Sciences, 135, 60-67. [CrossRef]
  • 22. Wang, J., Zhang, Y., Aghda, N.H., Pillai, A.R., Thakkar, R., Nokhodchi, A., Maniruzzaman, M. (2021). Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Advanced Drug Delivery Reviews, 174, 294-316. [CrossRef]
  • 23. Mathew, E., Pitzanti, G., Larrañeta, E., Lamprou, D.A. (2020). 3D printing of pharmaceuticals and drug delivery devices. Pharmaceutics, 12(3), 266. [CrossRef]
  • 24. Ragelle, H., Rahimian, S., Guzzi, E.A., Westenskow, P.D., Tibbitt, M.W., Schwach, G., Langer, R. (2021). Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Advanced Drug Delivery Reviews, 178, 113990. [CrossRef]
  • 25. Fina, F., Goyanes, A., Gaisford, S., Basit, A.W. (2017). Selective laser sintering (SLS) 3D printing of medicines. International Journal of Pharmaceutics, 529(1-2), 285-293. [CrossRef]
  • 26. Pavan Kalyan, B.G., Kumar, L. (2022). 3D printing: Applications in tissue engineering, medical devices, and drug delivery. Aaps Pharmscitech, 23(4), 92. [CrossRef]
  • 27. Fina, F., Goyanes, A., Gaisford, S., Basit, A.W. (2017). Selective laser sintering (SLS) 3D printing of medicines. International Journal of Pharmaceutics, 529(1-2), 285-293. [CrossRef]
  • 28. Fina, F., Goyanes, A., Madla, C.M., Awad, A., Trenfield, S.J., Kuek, J.M., Basit, A.W. (2018). 3D printing of drug-loaded gyroid lattices using selective laser sintering. International Journal of Pharmaceutics, 547(1-2), 44-52. [CrossRef]
  • 29. Awad, A., Fina, F., Goyanes, A., Gaisford, S., Basit, A.W. (2021). Advances in powder bed fusion 3D printing in drug delivery and healthcare. Advanced Drug Delivery Reviews, 174, 406-424. [CrossRef]
  • 30. Jacob, S., Nair, A.B., Patel, V., Shah, J. (2020). 3D printing technologies: Recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech, 21, 1-16. [CrossRef]
  • 31. Khaled, S.A., Burley, J.C., Alexander, M.R., Roberts, C.J. (2014). Desktop 3D printing of controlled release pharmaceutical bilayer tablets. International Journal of Pharmaceutics, 461(1-2), 105-111. [CrossRef]
  • 32. Acosta-Vélez, G.F., Wu, B.M. (2016). 3D pharming: Direct printing of personalized pharmaceutical tablets. Polymer Science, 2(1), 11. [CrossRef]
  • 33. Pandey, M., Choudhury, H., Fern, J.L.C., Kee, A.T.K., Kou, J., Jing, J.L.J., Gorain, B. (2020). 3D printing for oral drug delivery: A new tool to customize drug delivery. Drug Delivery and Translational Research, 10, 986-1001. [CrossRef]
  • 34. Zamboulis, A., Michailidou, G., Koumentakou, I., Bikiaris, D.N. (2022). Polysaccharide 3D printing for drug delivery applications. Pharmaceutics, 14(1), 145. [CrossRef]
  • 35. Goyanes, A., Det-Amornrat, U., Wang, J., Basit, A.W., Gaisford, S. (2016). 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release, 234, 41-48. [CrossRef]
  • 36. Goyanes, A., Wang, J., Buanz, A., Martínez-Pacheco, R., Telford, R., Gaisford, S., Basit, A.W. (2015). 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics. Molecular Pharmaceutics, 12(11), 4077-4084. [CrossRef]
  • 37. Okwuosa, T.C., Sadia, M., Isreb, A., Habashy, R., Peak, M., Alhnan, M.A. (2021). Can filaments be stored as a shelf-item for on-demand manufacturing of oral 3D printed tablets? An initial stability assessment. International Journal of Pharmaceutics, 600. [CrossRef]
  • 38. Binder, K.W., Allen, A.J., Yoo, J.J., Atala, A. (2011). Drop-on-demand inkjet bioprinting: A primer. Gene Therapy and Regulation, 6(01), 33-49. [CrossRef]
  • 39. Trenfield, S.J., Madla, C.M., Basit, A.W., Gaisford, S. (2018). Binder jet printing in pharmaceutical manufacturing. 3D Printing of Pharmaceuticals, 41-54. [CrossRef]
  • 40. Mohammed, A.A., Algahtani, M.S., Ahmad, M.Z., Ahmad, J., Kotta, S. (2021). 3D printing in medicine: Technology overview and drug delivery applications. Annals of 3D Printed Medicine, 4, 100037. [CrossRef]
  • 41. Cui, M., Pan, H., Fang, D., Sun, H., Qiao, S., Pan, W. (2021). Exploration and evaluation of dynamic dose-control platform for pediatric medicine based on Drop-on-Powder 3D printing technology. International Journal of Pharmaceutics, 596, 120201. [CrossRef]
  • 42. Gülcan, O., Günaydın, K., Tamer, A. (2021). The state of the art of material jetting—a critical review. Polymers, 13(16), 2829. [CrossRef]
  • 43. Clark, E.A., Alexander, M.R., Irvine, D.J., Roberts, C.J., Wallace, M.J., Yoo, J., Wildman, R.D. (2020). Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. International Journal of Pharmaceutics, 578, 118805. [CrossRef]
  • 44. Melnyk, L.A., Oyewumi, M.O. (2021). Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects, and challenges. Annals of 3D Printed Medicine, 4, 100035. [CrossRef]

TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ

Yıl 2024, Cilt: 48 Sayı: 1, 384 - 395, 20.01.2024
https://doi.org/10.33483/jfpau.1353676

Öz

Amaç: Eklemeli üretim olarak da bilinen üç boyutlu (3B) baskı, mühendislik, mimarlık ve uzay bilimleri gibi çeşitli endüstriyel alanlarda devrim yaratmıştır. Son yıllarda eczacılık alanında da umut vadeden bir teknoloji olarak 3B baskı, kişiselleştirilmiş katı dozaj formları, implantlar ve tıbbi cihazları yüksek hassasiyet ve doğrulukla üretmek için avantajlı bir yaklaşım olarak karşımıza çıkmaktadır. Bu teknoloji, geleneksel farmasötik üretim proseslerinin bazı sınırlamalarının üstesinden gelme potansiyeline sahiptir ve gelişmiş dozaj formu tasarımı, artan hasta uyuncu ve azaltılmış üretim maliyetleri gibi avantajlar sunmaktadır. Bu derleme kapsamında 3B baskılama ile tablet üretim yöntemleri incelenmiştir.
Sonuç ve Tartışma: Dozaj formlarının uygulanmasına yönelik farklı yollar arasında oral yol, hasta uyuncu açısından en çok tercih edilen veriliş yoludur. Oral yolla veriliş için tabletlerin üretimi, işlenmesi ve depolanması diğer dozaj formlarına göre daha kolay ve ekonomiktir. 3B baskı, farklı geometrik şekillerde ve farklı etkin madde salım profillerine sahip tabletlerin formülasyonu ve üretimine imkân sağlamaktadır. Bu baskılama teknolojisi temel olarak aynı baskı aşamalardan oluşsa da kendi içinde oldukça çeşitlenmiş ve Amerikan Test ve Malzemeler Derneği tarafından yedi farklı yönteme ayrılmıştır. Bu çeşitli yöntemler arasında tablet üretiminde oldukça başarı sağlayan eriyik birikim modelleme yöntemi pek çok çalışmaya konu olmuştur. Bununla birlikte tüm 3B baskılama yöntemleri ile tabletler ve kapletler üretilebilmektedir. Ancak kişiselleştirilmiş ilaçlar için kalite ve emniyeti gösterecek belirlenmiş bir çerçeve bulunmamaktadır ve de 3B teknolojinin sahte ilaç, yasal olmayan ilaçların yaygınlaşması ve yanlış etiketleme gibi riskleri de olabilecektir. 3B üretim için iyi imalat uygulamalarının (GMP) benimsenmesi, standart işlem prosedürlerinin oluşturulması, tüm üretim hattında ve sonrasında bitmiş üründe kalite kontrolün (örneğin tabletlerde içerik tektürlülüğü, kütle tektürlülüğü, çözünme testi) yürütülmesi gereklidir.

Kaynakça

  • 1. Jamróz, W., Szafraniec, J., Kurek, M., Jachowicz, R. (2018). 3D printing in pharmaceutical and medical applications-recent achievements and challenges. Pharmaceutical Research, 35, 1-22. [CrossRef]
  • 2. Prasad, L.K., Smyth, H. (2016). 3D Printing technologies for drug delivery: A review. Drug Development and Industrial Pharmacy, 42(7), 1019-1031. [CrossRef]
  • 3. Acosta-Vélez, G.F., Zhu, T.Z., Linsley, C.S., Wu, B.M. (2018). Photocurable poly (ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs. International Journal of Pharmaceutics, 546(1-2), 145-153. [CrossRef]
  • 4. Acosta-Vélez, G.F., Wu, B.M. (2016). 3D pharming: Direct printing of personalized pharmaceutical tablets. Polymer Science, 2(1), 11. [CrossRef]
  • 5. Elkasabgy, N.A., Mahmoud, A.A., Maged, A. (2020). 3D printing: An appealing route for customized drug delivery systems. International Journal of Pharmaceutics, 588, 119732. [CrossRef]
  • 6. Haghdadi, N., Laleh, M., Moyle, M., Primig, S. (2021). Additive manufacturing of steels: A review of achievements and challenges. Journal of Materials Science, 56, 64-107. [CrossRef]
  • 7. Sadawarte, S.R., Shambharkar, D.A., Bandopant, P. (2022). Concept of three dimensional printing in pharmacy. World Journal of Pharmaceutical Research, 11(10), 696-706.
  • 8. Shellabear, M., Nyrhilä, O. (2004). DMLS-Development history and state of the art. Laser assisted netshape engineering 4, proceedings of the 4th LANE, 21-24.
  • 9. Beg, S., Almalki, W.H., Malik, A., Farhan, M., Aatif, M., Rahman, Z., Rahman, M. (2020). 3D printing for drug delivery and biomedical applications. Drug Discovery Today, 25(9), 1668-1681. [CrossRef]
  • 10. Anand, N., Singh, D., Singh, G., Kaur, L., Dhawan, R.K., Kaur, N. (2020). 3D printing technology in pharmaceutical delivery system: Recent advancement in innovative approach. FABAD Journal of Pharmaceutical Sciences, 45(3), 253-268.
  • 11. Goole, J., Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International Journal of Pharmaceutics, 499(1-2), 376-394. [CrossRef]
  • 12. Bagheri, A., Jin, J. (2019). Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 1, 593-611. [CrossRef]
  • 13. Norman, J., Madurawe, R.D., Moore, C.M., Khan, M.A., Khairuzzaman, A. (2017). A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced Drug Delivery Reviews, 108, 39-50. [CrossRef]
  • 14. Low, Z.X., Chua, Y.T., Ray, B.M., Mattia, D., Metcalfe, I.S., Patterson, D.A. (2017). Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of Membrane Science, 523, 596-613. [CrossRef]
  • 15. Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., Basit, A.W. (2021). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 329, 743-757. [CrossRef]
  • 16. Economidou, S.N., Lamprou, D.A., Douroumis, D. (2018). 3D printing applications for transdermal drug delivery. International Journal of Pharmaceutics, 544(2), 415-424. [CrossRef]
  • 17. Mohapatra, S., Kar, R.K., Biswal, P.K., Bindhani, S. (2022). Approaches of 3D printing in current drug delivery. Sensors International, 3, 100146. [CrossRef]
  • 18. Mahmood, M.A. (2021). 3D printing in drug delivery and biomedical applications: A state-of-the-art review. Compounds, 1(3), 94-115. [CrossRef]
  • 19. Wang, J., Goyanes, A., Gaisford, S., Basit, A.W. (2016). Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International Journal of Pharmaceutics, 503(1-2), 207-212. [CrossRef]
  • 20. Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., Basit, A.W. (2021). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 329, 743-757. [CrossRef]
  • 21. Kadry, H., Wadnap, S., Xu, C., Ahsan, F. (2019). Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. European Journal of Pharmaceutical Sciences, 135, 60-67. [CrossRef]
  • 22. Wang, J., Zhang, Y., Aghda, N.H., Pillai, A.R., Thakkar, R., Nokhodchi, A., Maniruzzaman, M. (2021). Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Advanced Drug Delivery Reviews, 174, 294-316. [CrossRef]
  • 23. Mathew, E., Pitzanti, G., Larrañeta, E., Lamprou, D.A. (2020). 3D printing of pharmaceuticals and drug delivery devices. Pharmaceutics, 12(3), 266. [CrossRef]
  • 24. Ragelle, H., Rahimian, S., Guzzi, E.A., Westenskow, P.D., Tibbitt, M.W., Schwach, G., Langer, R. (2021). Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Advanced Drug Delivery Reviews, 178, 113990. [CrossRef]
  • 25. Fina, F., Goyanes, A., Gaisford, S., Basit, A.W. (2017). Selective laser sintering (SLS) 3D printing of medicines. International Journal of Pharmaceutics, 529(1-2), 285-293. [CrossRef]
  • 26. Pavan Kalyan, B.G., Kumar, L. (2022). 3D printing: Applications in tissue engineering, medical devices, and drug delivery. Aaps Pharmscitech, 23(4), 92. [CrossRef]
  • 27. Fina, F., Goyanes, A., Gaisford, S., Basit, A.W. (2017). Selective laser sintering (SLS) 3D printing of medicines. International Journal of Pharmaceutics, 529(1-2), 285-293. [CrossRef]
  • 28. Fina, F., Goyanes, A., Madla, C.M., Awad, A., Trenfield, S.J., Kuek, J.M., Basit, A.W. (2018). 3D printing of drug-loaded gyroid lattices using selective laser sintering. International Journal of Pharmaceutics, 547(1-2), 44-52. [CrossRef]
  • 29. Awad, A., Fina, F., Goyanes, A., Gaisford, S., Basit, A.W. (2021). Advances in powder bed fusion 3D printing in drug delivery and healthcare. Advanced Drug Delivery Reviews, 174, 406-424. [CrossRef]
  • 30. Jacob, S., Nair, A.B., Patel, V., Shah, J. (2020). 3D printing technologies: Recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech, 21, 1-16. [CrossRef]
  • 31. Khaled, S.A., Burley, J.C., Alexander, M.R., Roberts, C.J. (2014). Desktop 3D printing of controlled release pharmaceutical bilayer tablets. International Journal of Pharmaceutics, 461(1-2), 105-111. [CrossRef]
  • 32. Acosta-Vélez, G.F., Wu, B.M. (2016). 3D pharming: Direct printing of personalized pharmaceutical tablets. Polymer Science, 2(1), 11. [CrossRef]
  • 33. Pandey, M., Choudhury, H., Fern, J.L.C., Kee, A.T.K., Kou, J., Jing, J.L.J., Gorain, B. (2020). 3D printing for oral drug delivery: A new tool to customize drug delivery. Drug Delivery and Translational Research, 10, 986-1001. [CrossRef]
  • 34. Zamboulis, A., Michailidou, G., Koumentakou, I., Bikiaris, D.N. (2022). Polysaccharide 3D printing for drug delivery applications. Pharmaceutics, 14(1), 145. [CrossRef]
  • 35. Goyanes, A., Det-Amornrat, U., Wang, J., Basit, A.W., Gaisford, S. (2016). 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release, 234, 41-48. [CrossRef]
  • 36. Goyanes, A., Wang, J., Buanz, A., Martínez-Pacheco, R., Telford, R., Gaisford, S., Basit, A.W. (2015). 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics. Molecular Pharmaceutics, 12(11), 4077-4084. [CrossRef]
  • 37. Okwuosa, T.C., Sadia, M., Isreb, A., Habashy, R., Peak, M., Alhnan, M.A. (2021). Can filaments be stored as a shelf-item for on-demand manufacturing of oral 3D printed tablets? An initial stability assessment. International Journal of Pharmaceutics, 600. [CrossRef]
  • 38. Binder, K.W., Allen, A.J., Yoo, J.J., Atala, A. (2011). Drop-on-demand inkjet bioprinting: A primer. Gene Therapy and Regulation, 6(01), 33-49. [CrossRef]
  • 39. Trenfield, S.J., Madla, C.M., Basit, A.W., Gaisford, S. (2018). Binder jet printing in pharmaceutical manufacturing. 3D Printing of Pharmaceuticals, 41-54. [CrossRef]
  • 40. Mohammed, A.A., Algahtani, M.S., Ahmad, M.Z., Ahmad, J., Kotta, S. (2021). 3D printing in medicine: Technology overview and drug delivery applications. Annals of 3D Printed Medicine, 4, 100037. [CrossRef]
  • 41. Cui, M., Pan, H., Fang, D., Sun, H., Qiao, S., Pan, W. (2021). Exploration and evaluation of dynamic dose-control platform for pediatric medicine based on Drop-on-Powder 3D printing technology. International Journal of Pharmaceutics, 596, 120201. [CrossRef]
  • 42. Gülcan, O., Günaydın, K., Tamer, A. (2021). The state of the art of material jetting—a critical review. Polymers, 13(16), 2829. [CrossRef]
  • 43. Clark, E.A., Alexander, M.R., Irvine, D.J., Roberts, C.J., Wallace, M.J., Yoo, J., Wildman, R.D. (2020). Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. International Journal of Pharmaceutics, 578, 118805. [CrossRef]
  • 44. Melnyk, L.A., Oyewumi, M.O. (2021). Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects, and challenges. Annals of 3D Printed Medicine, 4, 100035. [CrossRef]
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İlaç Dağıtım Teknolojileri
Bölüm Derleme
Yazarlar

Sevgi Tektaş 0000-0002-8337-9604

Şeyda Güneş 0000-0001-5695-0070

Prof. Dr. Nilüfer Yuksel 0000-0002-8907-9741

Erken Görünüm Tarihi 30 Kasım 2023
Yayımlanma Tarihi 20 Ocak 2024
Gönderilme Tarihi 1 Eylül 2023
Kabul Tarihi 16 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 1

Kaynak Göster

APA Tektaş, S., Güneş, Ş., & Yuksel, P. D. N. (2024). TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ. Journal of Faculty of Pharmacy of Ankara University, 48(1), 384-395. https://doi.org/10.33483/jfpau.1353676
AMA Tektaş S, Güneş Ş, Yuksel PDN. TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ. Ankara Ecz. Fak. Derg. Ocak 2024;48(1):384-395. doi:10.33483/jfpau.1353676
Chicago Tektaş, Sevgi, Şeyda Güneş, ve Prof. Dr. Nilüfer Yuksel. “TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 1 (Ocak 2024): 384-95. https://doi.org/10.33483/jfpau.1353676.
EndNote Tektaş S, Güneş Ş, Yuksel PDN (01 Ocak 2024) TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ. Journal of Faculty of Pharmacy of Ankara University 48 1 384–395.
IEEE S. Tektaş, Ş. Güneş, ve P. D. N. Yuksel, “TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ”, Ankara Ecz. Fak. Derg., c. 48, sy. 1, ss. 384–395, 2024, doi: 10.33483/jfpau.1353676.
ISNAD Tektaş, Sevgi vd. “TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ”. Journal of Faculty of Pharmacy of Ankara University 48/1 (Ocak 2024), 384-395. https://doi.org/10.33483/jfpau.1353676.
JAMA Tektaş S, Güneş Ş, Yuksel PDN. TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ. Ankara Ecz. Fak. Derg. 2024;48:384–395.
MLA Tektaş, Sevgi vd. “TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 1, 2024, ss. 384-95, doi:10.33483/jfpau.1353676.
Vancouver Tektaş S, Güneş Ş, Yuksel PDN. TABLET DOZAJ FORMLARININ TASARIMINDA VE GELİŞTİRİLMESİNDE ÜÇ-BOYUTLU BASKI TEKNOLOJİSİ. Ankara Ecz. Fak. Derg. 2024;48(1):384-95.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.